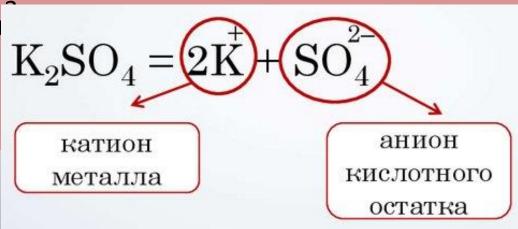


Соли и их свойства.



Соли-это сложные вещества, образованные атомами металлов и кислотными остатками.

Диссоциация солей

- <u>Солями</u> называются электролиты, при диссоциации которых образуются катионы металлов, а также катион аммония (NH⁺₄) и анионы кислотных остатков.
- Например, диссоциация средних солей:
- $(NH_4)_2SO_4 -> 2NH_4^+ + SO_4^{2-}$;
- Na₃PO₄-> 3 Na + PO₄

Номенклатура солей

Название

Название

Указание

Кислотного + металла (в Р.п.) + валентности

остатка

переменная)

(если она

NaCl

хлорид натрия

• CaCO₃

карбонат кальция

• $Ca_3(PO_4)_2$

фосфат кальция

• MgCI₂

хлорид магния

Классификация солей

1) По растворимости в воде

Растворимые

Нерастворимые

Малорастворимые

Аммиачная селитра NH_4NO_3

Сульфат кальция

CaSO₄

Фосфат железа FePO₄

Таблица растворимости кислот, оснований и солей в воде при комнатной температуре

РАСТВОРИМОСТЬ КИСЛОТ, ОСНОВАНИИ И СОЛЕЙ В ВОДЕ

KAT	140		
2 N I	100	1	-
D. AM. II		"п	ы

АНИОНЫ	H,	K*	Ba2*	Ca²⁺	Na*	NH,	Mg ²	Al3+	Mn ²⁴	Zn2*	Cr3+	Fe2*	Fe3*	Co2+	Ni ²⁺	Pb2+	Cu2+	Hg ²	Ag
OH-		P	P	M	P	P	M	Н	Н	Н	Н	Н	Н	Н	Н	M	Н	-	_
NO,	P	P	Р	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
SO,2-	P	Р	Р	M	P	P	P	P	P	P	P	P	P	P	P	M	P	P	M
ı	P	P	Р	Р	P	P	P	P	P	P	P	P	-	P	P	M	_	Н	Н
Br*	P	Р	Р	P	P	P	P	P	P	P	P	P	P	P	P	M	P	M	Н
CL ⁻	P	Р	Р	Р	P	P	P	P	P	P	P	P	P	P	P	M	P	P	Н
SO,2-	Pİ	P	M	M	P	P	M	-	Н	M	-	M	_	Н	Н	Н	-	4	M
PO,2-	P	P	Н	Н	P	-	M	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CH3COO-	P	P	P	P	P	P	P	M	P	P	P	P	P	P	P	P	P	P	P
CO,2-	P↑	P	Н	н	P	P	M	_	Н	н	-	н	_	Н	н	н	_	_	Н
S2-	P	P	_	P	P	P	_	-	Н	н	-	Н	Н	Н	Н	н	Н	Н	Н
SiO,2-	Н	P	Н	Н	P	-	Н	_	_	Н	_	Н	_	_		Н	-	-	_

СРЕДА РАСТВОРА

ЩЕЛОЧНА

кисла

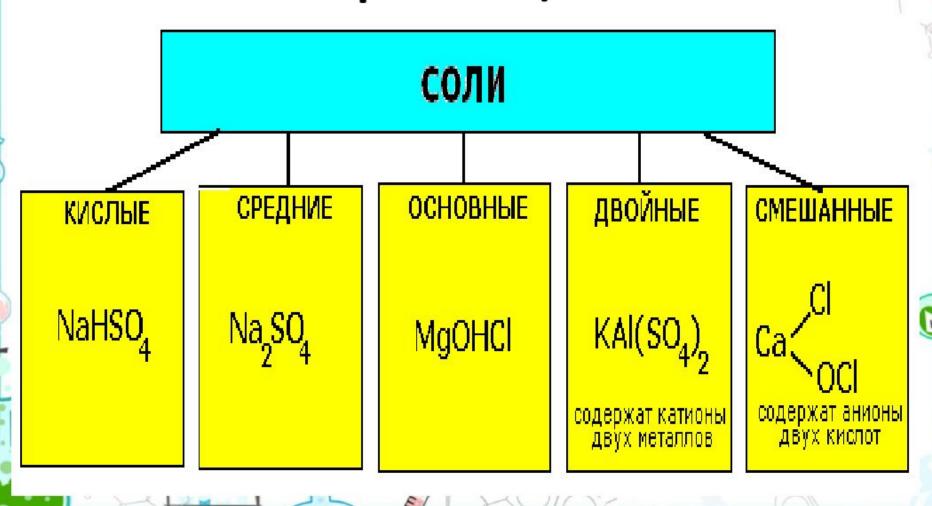
НЕЙТРАЛЬНАЯ

ВЕЩЕСТВО РАЗЛАГАЕТСЯ ВОДОЙ ИЛИ НЕ СУЩЕСТВУЕТ

- Н НЕРАСТВОРИМЫЕ (МЕНЬШЕ 0,001г ДО 1г ВЕЩЕСТВА В 100г ВОДЫ)
- Р РАСТВОРИМЫЕ (БОЛЬШЕ 1 г ВЕЩЕСТВА В 100 г ВОДЫ)
- М малорастворимые (ОТ 0,001г ДО1г ВЕЩЕСТВА В100г ВОДЫ)
- Р† ВЕЩЕСТВО РАЗЛАГАЕТСЯ С ВЫДЕЛЕНИЕМ ГАЗА

Классификация солей

2) По наличию или отсутствию кислорода


Кислородсодержащие Например:

 Na_2SO_4 (сульфат натрия) KNO_3 (нитрат калия) $Ca(NO_2)_2$ (нитрит кальция)

Бескислородные Например:

NaBr (бромид натрия) КY (иодид калия) CaCl₂ (хлорид кальция)

Классификация солей

Разновидности солей

Соли бывают:

1) Средние соли — это продукты полного замещения атомов водорода в кислоте на металл.

Например: Na_2CO_3 (карбонат натрия) $CuSO_4$ (сульфат меди)

Разновидности солей

2) **Кислые соли** – это продукты неполного замещения атомов водорода в кислоте на металл.

Например:

NаНСО $_3$ (<u>гидро</u>карбонат натрия) Мg(HSO $_4$) $_2$ (<u>гидро</u>сульфат магния)

Разновидности солей

3) Основные соли — это продукты неполного замещения гидроксогрупп в основании на кислотный остаток.

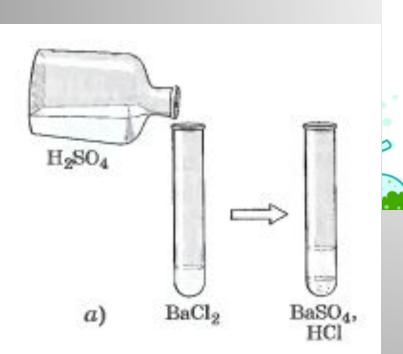
Например:

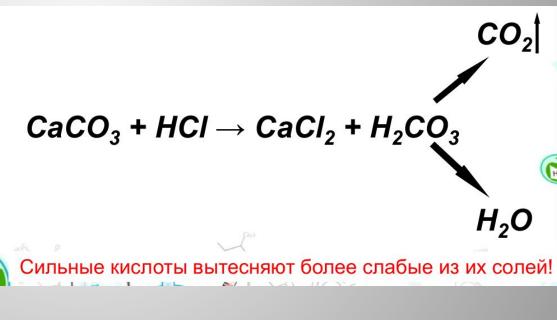
(CuOH)₂CO₃ (<u>гидроксо</u>карбонат меди (II)) AlOHCl₂ (<u>гидроксо</u>хлорид алюминия)

- Двойные соли в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами (KAl(SO4)2x12H2O)
- Смешанные соли в их составе присутствует два различных аниона (Ca(OCl)Cl)

Физические свойства:

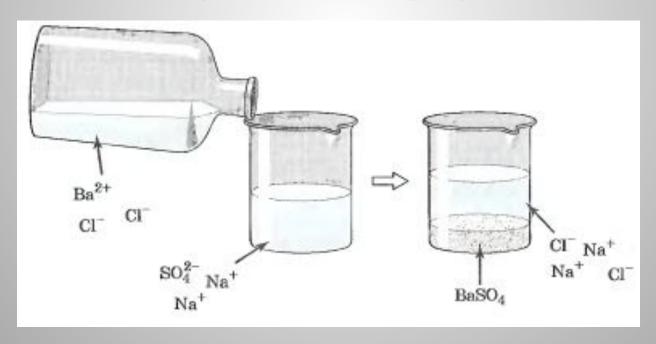
Все соли твердые кристаллические вещества. Соли имеют различную окраску, и разную растворимость в воде.


Соли — кристаллические вещества, в основном белого цвета. Соли железа — желто - коричневого цвета. Соли меди —


зеленовато-голубого цвета.

1) Соль + кислота = другая соль + другая кислота Например: $H_2SO_4 + BaCl_2 = BaSO_4 + 2HCl$

Типичная реакция ионного обмена, протекающая только в том случае, если образуется осадок или газ.



2) Соль + щелочь = другая соль + другое основание Например: NaOH + NH₄Cl = NaCl + NH₃I + H₂O Типичная реакция ионного обмена, протекающая только в том случае, если образуется осадок или газ.

3) $Coль_1 + coль_2 = coль_3 + coль_4$ Например: $Na_2SO_4 + BaCl_2 = BaSO_4$ +2NaCl

Типичная реакция ионного обмена, протекающая только в том случае, если образуется осадок.

- 4) Соль + металл = другая соль + другой металл Например: $CuSO_4(p-p) + Fe = FeSO_4(p-p) + Cu$
- <u>Правила:</u> а) Каждый металл вытесняет из растворов солей все другие металлы, расположенные правее его в ряду напряжений;
- б) обе соли (и реагирующая, и образующаяся в результате реакции) должны быть растворимыми;
- в) металлы не должны взаимодействовать с водой, поэтому металлы главных подгрупп I и II группы ПС Д.И.Менделеева не вытесняют другие металлы из растворов солей.

Способы получения

Основаны на химических свойствах оксидов,

оснований, кислот

- 1. Кислота + основание = $\underline{\text{соль}}$ + вода $H_2SO_4 + 2NaOH = \underline{Na_2SO_4} + 2H_2O$
- 2. Кислота + металл = $\underline{\text{соль}}$ + водород 2HCL +Zn = $\underline{\text{ZnCL}}_2$ + $\underline{\text{H}}_2$
- 3. Кислота + основный оксид = $\underline{\text{соль}}$ + вода 2HCL + CuO = $\underline{\text{CuCL}}_2$ + H₂O
- 4. Кислота + соль = новая кислота + новая соль $H_2SO_4 + BaCL_2 = 2HCL + BaSO_4$

Условия: в результате реакции должны получиться газ, осадок или вода.

Способы получения

- 5. Основание + соль = новое основание + новая <u>соль</u> 2КОН + CaSO₄ = Ca(OH) $_2$ + \underline{K}_2 SO₄
- 6. Основание + кислотный оксид + = \underline{conb} + вода 2NaOH + SO₃ = $\underline{\text{Na}_2\text{SO}_4}$ + H₂O
- 7. Кислотный оксид + основный оксид = \underline{conb} $CO_2 + CaO = \underline{CaCO_3}$
- 8. Соль + соль = новая $\underline{coль}$ + новая $\underline{coль}$ $KCl + AgNO_3 \rightarrow \underline{AgCl} + \underline{KNO_3}$
- 9. Соль + металл = новая <u>соль</u> + металл
 - $CuSO_4 + Fe = FeSO_4 + Cu$
- 10. Металл + неметалл = <u>соль</u>

$$Fe + S = FeS$$

Применение солей

Соль в природе

Мёртвое море

Розовое озеро в Сенегале

Это озеро имеет такой цвет из-за большого количества микроорганизмов и полезных ископаемых. Местные женщины проводят до 14 часов в день собирая там соль.

Самое большое солевое озеро в мире расположено на юге пустынной равнины Альтиплано, в Боливии, на высоте около 3700 м. Его площадь составляет 10,5 квадратных километров. В центре толщина соли достигает 10 метров. Это озеро содержит более 10 миллиардов тонн соли. Когда Salar de Uyuni покрывается водой, в нем отражается каждое облако.