Создание сеточных моделей

Семинар 2

OL	utine		ą	
	Project Model (B3) Model (B3) Coordinate	Systems		
De	tails of "Mesh"		ą	
-	Defaults			
	Physics Preference	CFD	-	
	Solver Preference	Fluent		
	Relevance	0		
+	Sizing	izing		
+	inflation			
	Assembly Meshing			
	Method	None		
-	Patch Conforming Options			
	Triangle Surface Mesher	Program Controlled		
+	Advanced			
	Defeaturing			
+				

Defaults [Общие определения]

- Physics Preference выбор системы анализа, для которой строится сеточная модель (CFD).
- **Solver Preference** выбор типа решателя (CFX).
- Relevance
 опция
 позволяет

 контролировать размер элементов
 сетки для всей модели.
 Параметр

 изменяется от -100 (грубая, крупная
 сетка) до +100 (мелкая сетка).
- Чем мельче сетка, тем точнее результат расчета. Однако, более мелкая сетка использует большее количество конечных элементов, поэтому требуется больше времени на расчет и больше системных ресурсов компьютера.

Sizing [Размер элементов сетки]

•Use Advanced Size Function [подключение расширенных функций] 1.Curvature Size Function (кривизна) – проверяется кривизна по ребрам и граням, и вычисляется размеры элементов на этих объектах таким образом, чтобы из размер не превышал максимальный размер.

Curvature Normal Angle [0...180] – максимально допустимый угол, при котором одна грань элемента заменяет криволинейную поверхность.

Min Size – минимальный размер ребра элемен⁻ Max Face Size – максимальный размер на поверхности геометрической модели

Max Size – максимальный размер элемента в объеме модели Growth Rate [1...5] – увеличение длины ребра элемента с каждым последующим слоем элементов. Например, скорость роста 1,2 приводит к увеличению длины ребра элемента на 20 % в каждом последующим слое элементов. Relevance Center – грубая, средняя и точная сетки (Coarse, Medium, and Fine).

Smoothing – параметр сглаживания сетки, использующийся для улучшения качества сетки: низкий (Low), средний (Medium) и высокий (High).

Transition – задает уровень роста размеров соседних элементов: гладкий переход (Slow), резкий переход (Fast).

Span Angle Center – параметр улучшения качества сетки на поверхностях с кривизной, определяющий величину центрального угла: грубая сетка (Coarse) – от 91° до 60°; средняя (Medium) – от 75° до 24°; точная (Fine)

Sizing [Размер элементов сетки]

•Use Advanced Size Function [подключение расширенных функций]

2. Proximity (близость) – между близкими элементами геометрии сетка уплотняется.

Ргохітіту Ассигасу [0...1] – точность определения размеров элементов между близкими геометрическими объектами (0 - грубо, 1 – более точно), по умолчанию 0,5.

Num Cells Across Gap – количество промежуточных слоев между близкими геометрическими объектами.

3. Proximity and Curvature

4. Fixed – градация между минимальным и максимальным размерами на основе определенного темпа роста.

Задание формы расчетных элементов

1. По умолчанию форма элементов определится топологией геометрической модели.

Удаление сетки:

Щелкнуть в дереве на ветке **Mesh** и выбрать *ПКМ* > Clear Generated Data.

2. Создание призматических слоёв

2.1. Глобальные настройки (призматические слои строятся от всех поверхностей модели, кроме выборок)

Выбрать в окне детализации <u>Inflation</u>и установить параметры:

- метод управляется программой Use automatic Inflation: Program Controlled
- опция проработки на полную толщину *Thickness*
- количество слоев Number of Layers: 5.
- максимальная толщина

Maximum Thickness: 3 mm.

2.2. Создание призматических слоёв на локальных объектах

Выбрать в панели инструментов **Mesh** установить параметры:

- объект Geometry вся модель
- поверхности для создания слоёв Boundary
- опция проработки на полную толщину Inflation option: Total Thickness
- количество слоев Number of Layers: 5.
- максимальная толщина

Maximum Thickness: 3 mm.

Scope		
Scoping Method	Geometry Selection	
Geometry	1 Body	
Definition		
Suppressed	No	
Boundary Scoping Method	Geometry Selection	
Boundary	5 Faces	
Inflation Option	Total Thickness	
Number of Layers	5	
Growth Rate	1.2	
Maximum Thickness	3. mm	
Inflation Algorithm	Pre	

Настройки призматических слоёв

• <u>Smooth Transition</u> – плавный переход.

Высота последнего призматического слоя: H = Transition_Ratio x average_edge_length (средняя длина ребра тетраэдрических элементов)

Высота первого слоя:

h = H / [Growth_Rate ^ (Maximum_Layers -1)]

Transition Ratio [0...1] – коэффициент перехода определяет скорость, с которой растут смежные элементы. Значение по умолчанию для коэффициента перехода составляет 0,77.

Maximum Layers [1...1000] – количество слоев.

Growth Rate [0,1...5] – скорость роста определяет относительную толщину соседних слоев. По умолчанию используется значение 1,2.

8

Настройки призматических слоёв

• <u>Total Thickness</u> – полная толщина призматических слоёв

Number of Layers – фактическое количество призматических слоев

Growth Rate [0,1...5] – скорость роста определяет относительную толщину соседних слоев. По умолчанию используется значение 1,2.

Maximum Thickness – желаемая толщина призматического слоя.

• <u>First Layer Thickness</u> – параметр «толщина первого слоя»

First Layer Height – высота первого слоя. *Maximum Layers* [1...1000] – количество слоев. *Growth Rate* [0,1...5] – скорость роста определяет относительную толщину соседних слоев. По умолчанию

9

Настройки призматических слоёв

- 1. Inflation Option определяет высоту уровней инфляции
 - First Aspect Ratio отношение высоты первого слоя

First Aspect Ratio – отношение высоты первого слоя к высоте всех слоёв.

Growth Rate [0,1...5] – скорость роста определяет относительную толщину соседних слоев. По умолчанию используется значение 1,2. *Maximum Layers* [1...1000] – количество слоев.

• Last Aspect Ratio – отношение высоты посл

First Layer Height – высота первого слоя. *Maximum Layers* [1...1000] – количество слоев.

Aspect Ratio (Base/Height) [0,5...20] – соотношения сторон (основание / высота). Например, если Aspect Ratio (Base/Height) = 2 высота смещения последнего слоя будет в 0,2 раза меньше локального размера

Задание формы элементов сеточной модели

Выбрать в панели инструментов **Mesh Control** > *Method* и установить форму элементов:

Tetra Hex Sweep MultiZone

Самостоятельная работа

Самостоятельная работа

