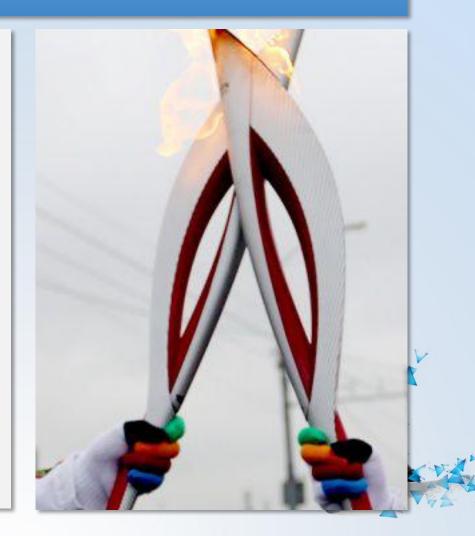


Зимние олимпийские игры Общая статистика

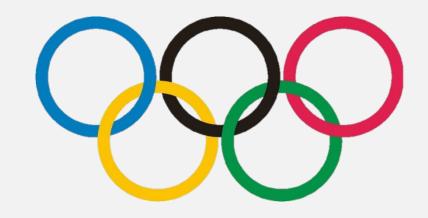
Авторы проекта:

Веревкин Кирилл Кузнецов Михаил, ИС1-31, 2014 год

Цель


• Рассмотреть статистику выступления команд СССР и России на Зимних Олимпийских Играх

 Сделать выводы о результативности выступления команды СССР и РФ на Зимних Олимпийских Играх


Олимпийский огонь был впервые зажжен только на Играх Амстердаме в 1928 г., а традиция эстафеты олимпийского факела родилась в Берлине в 1936

Выступления СССР и РФ на зимних Олимпийских играх

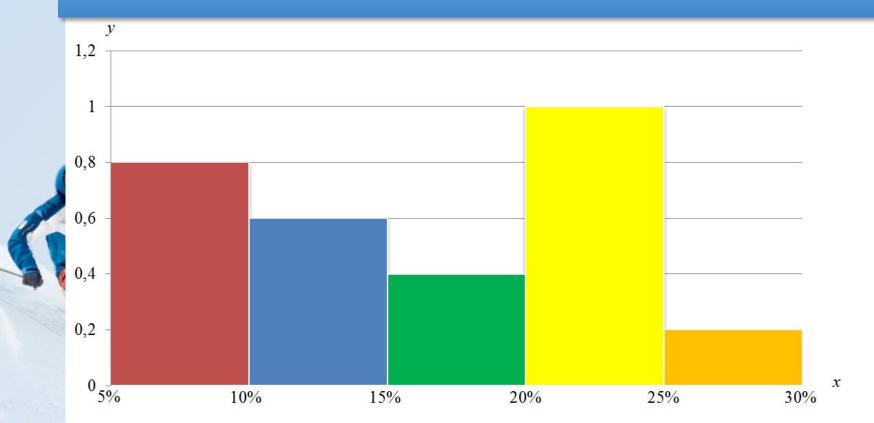
ооцент аград 22% 26% 24%
26%
24%
12%
15%
24%
19%
21%
21%
13%
9%
6%
9%
6%
11%

В 1992 году спортсмены бывшего СССР участвовали в Летней Олимпиаде-1992 в Барселоне и Зимней Олимпиаде-1992 в Альбервиле объединённой командой стран СНГ под олимпийским флагом.

Дискретный вариационный и статистический ряд получения наград СССР и РФ

$x_{ m i}$ - процент наград	6	9	11	12	13	15	19	21	22	24	26	Σ
т і - количество олимпиад	2	2	1	1	1	1	1	2	1	2	1	15
f i – относительн. частоты	2/15	2/15	1/15	1/15	1/15	1/15	1/15	2/15	1/15	2/15	1/15	1

Сколько золота содержится в золотой олимпийской медали?


Согласно рекомендациям Международного олимпийского комитета, в золотых олимпийских медалях должно содержаться не менее 6 граммов чистого золота в виде нанесения.

Интервальный вариационный ряд получения наград СССР и РФ

Процент наград	5-10%	10-15%	15-20%	20-25%	25-30%	Сумма
Количество	4	3	2	5	1	15
<u>h</u>	n 0	0.6	\cap Λ	1	0.2	

Гистограмма

Главный слоган XXII-х Зимних Олимпийских игр в Сочи:

«Жаркие. Зимние. Твои».

Девиз же паралимпийских игр:

«Spirit in Motion»

Sochi-ru Zoillooo

Числовые характеристики для дискретного вариационного ряда

а) Для вычисления среднего процента наград воспользуемся формулой:

$$\overline{x}_e = \frac{x_1 \cdot m_1 + x_2 \cdot m_2 + \ldots + x_\kappa \cdot m_\kappa}{n}, \text{ тогда}$$

$$\overline{x}_e = \frac{6 \cdot 2 + 9 \cdot 2 + 11 \cdot 1 + 12 \cdot 1 + 13 \cdot 1 + 15 \cdot 1 + 19 \cdot 1 + 21 \cdot 2 + 22 \cdot 1 + 24 \cdot 2 + 26 \cdot 1}{15} = \frac{238}{15} = 15,87\%.$$

б) Найдем дисперсию по формуле
$$D_e = \overline{x_e^2} - (\overline{x}_e)^2$$
, где $\overline{x_e^2} = \frac{x_1^2 \cdot m_1 + x_2^2 \cdot m_2 + \ldots + x_k^2 \cdot m_k}{n}$.

$$\overline{x_e^2} = \frac{6^2 \cdot 2 + 9^2 \cdot 2 + 11^2 \cdot 1 + 12^2 \cdot 1 + 13^2 \cdot 1 + 15^2 \cdot 1 + 19^2 \cdot 1 + 21^2 \cdot 2 + 22^2 \cdot 1 + 24^2 \cdot 2 + 26^2 \cdot 1}{15}$$

$$\overline{x_e^2} = \frac{4448}{15} = 296,53 \%^2.$$

Тогда $D_e = 296,53 - (15,87)^2 ≈ 44,67%^2$.

в)
$$\sigma_e = \sqrt{D_e}$$
 следовательно, среднеквадратическое отклонение $\sigma_e = \sqrt{44,67} \approx 6,68$ %.

Глава медицинской комиссии МОК, принц Александр де Мерод, назвал Игры в Москве 1980 года самой честной Олимпиадой.

Числовые характеристики для интервального вариационного ряда

а) Для вычисления среднего процента наград воспользуемся формулой:

$$\overline{x}_e = \frac{x_1 \cdot m_1 + x_2 \cdot m_2 + \ldots + x_\kappa \cdot m_\kappa}{n}, \text{ тогда}$$

$$\overline{x}_e = \frac{7.5 \cdot 4 + 12.5 \cdot 3 + 17.5 \cdot 2 + 22.5 \cdot 5 + 27.5 \cdot 1}{15} = \frac{242.5}{15} = 16.17 \%.$$

б) Найдем дисперсию по формуле $D_e = \overline{x_e^2} - (\overline{x}_e)^2$, где $\overline{x_e^2} = \frac{x_1^2 \cdot m_1 + x_2^2 \cdot m_2 + ... + x_k^2 \cdot m_n}{n}$

Получим, что

$$\overline{x_e^2} = \frac{7.5^2 \cdot 4 + 12.5^2 \cdot 3 + 17.5^2 \cdot 2 + 22.5^2 \cdot 5 + 27.5^2 \cdot 1}{15} = \frac{4593.75}{15} = 306.25\%^2.$$

Тогда $D_e = 306,25 - (16,17)^2 \approx 44,78\%^2$.

в)
$$\sigma_e = \sqrt{D_e}$$
 следовательно, среднеквадратическое отклонение $\sigma_e = \sqrt{44,78} \approx 6,69$ %.

С 1924 г. зимние Игры проводят отдельно от летних, причем до 1992 г. – в тот же год, что и летние.

Вывод

• а) средний процент наград, выигранных командами СССР и России на Зимних Олимпийских играх начиная с 1956 по 2014 год – 16% от общего количества разыгрываемых медалей Олимпиады.

Вывод

- в) **закон распределения** процента наград **близок к нормальному**, но при условии:
- до 1994 года для страны СССР уровень подготовки и мотивации спортсменов советской спортивной школы был чрезвычайно высок, поэтому процент наград характеризуется одной кривой (красный цвет);
- начиная с 1994 года для Российской Федерации в связи со сложным историческим периодом перестройки и распадом СССР уровень подготовки и мотивации спортсменов снизился, но процент наград по прежнему характеризуется кривой Гаусса (фиолетовый цвет).