Физическая химия

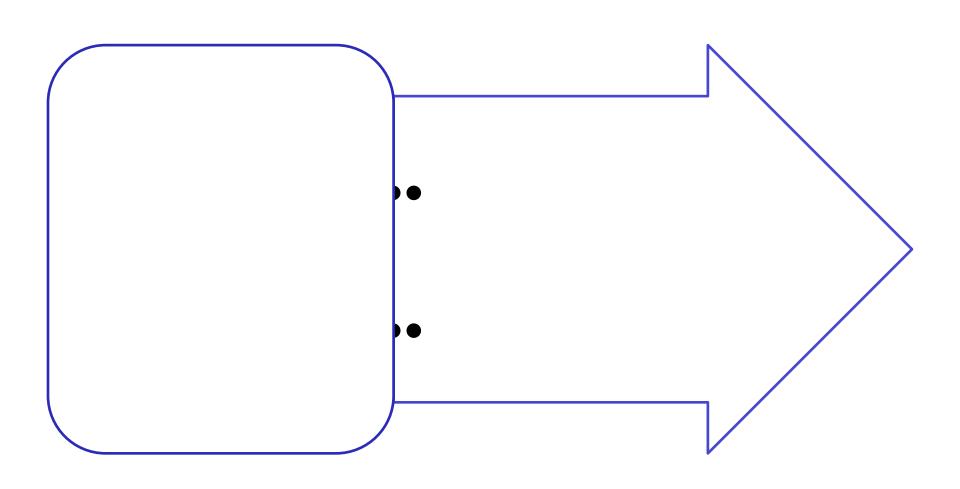
Тема 4.

Термодинамика.

- Реакцию, протекающую при постоянном объёме V=const (в замкнутом реакторе), характеризуют изменениемвнутренней энергии U.
- \Box Qv = Δ U
- Реакцию, протекающую при постоянном давлении p=const,
 характеризуют изменением энтальпии Н
- Энтропия S характеризует возможность самопроизвольных, равновесных и несамопроизвольных процессов только для изолированных систем, которые практически не существуют
- □ dS ≥ 0 для изолированных систем
- Для закрытых систем dS ≥δQ/T
- Энергия TdS «связанная» энергия, которая не может быть передана окружающей среде в виде работы

- Неизолированные закрытые системы могут отдать внешней среде только часть своей внутренней энергии.
- В изобарно-изотермических условиях (p,T=const) эта энергия называется энергией Гиббса (G), в изохорно-изотермических условиях (V,T=const) энергией Гельмгольца (F).
- Энергия Гиббса и энергия Гельмгольца являются термодинамическими функциями состояния системы; они характеризуют часть энергии, которую система может отдать окружающей среде в форме работы.
- Энергия Гельмгольца характеризует максимальную возможную работу.
- □ Wmax ≤ -∆F
- 🛮 Энергия Гиббса характеризует максимальную полезную работу.
- □ Wполез \leq - Δ G

2.10. Термодинамические потенциалы


F(A)

- функция Гельмгольца
- энергия Гельмгольца
- изохорный потенциал
- изохорно-изотермический потенциал
- свободная энергия при постоянном объеме
- свободная энергия Гельмгольца

G

- функция Гиббса
- энергия Гиббса
- изобарный потенциал
- изобарно-изотермический потенциал
- свободная энергия при постоянном давлении
- свободная энергия Гиббса

- 2. Химическая термодинамика
- 2.10. Термодинамические потенциалы

2.10. Термодинамические потенциалы

Thermodynamic potentials are useful for the description of non-cyclic processes.

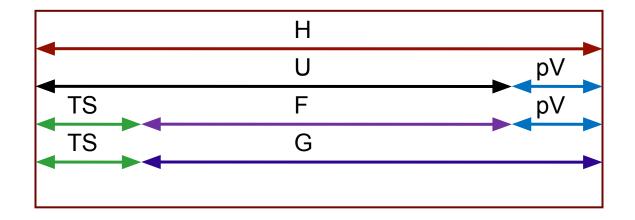
They are used along with the First Law of Thermodynamics.

System work and entropy play a major role.

Internal energy

U = energy needed to create a system

= U-TS Helmholtz free energy


F = energy needed to create a system minus the energy you can get from the environment.

H = energy needed to create a system plus the work needed to make room for it

G= U+PV-TS Gibbs free energy

G = total energy needed to create a system and make room for it minus the energy you can get from the environment.

- 2. Химическая термодинамика
- 2.10. Термодинамические потенциалы
- □ Соотношение между U, H, F и G:

2.10. Термодинамические потенциалы

$$TdS \ge dU + \delta W$$
.

При условии постоянства температуры можно внести ее под знак дифференциала:

$$d(TS) \ge dU + \delta W$$
.

Выразим отсюда работу системы против внешних сил

$$\delta W \le -(dU - d(TS));$$

 $\delta W \le -(d(U - TS))$.

F=U-TS

Полученное уравнение показывает, что работа системы δW должна быть меньше (в необратимом процесс) или, в крайнем случае, равна (обратимый процесс) правой части этого уравнения. Максимальная работа получается в обратимом процессе:

$$\delta W_{max} = -(d(U - TS))$$

или

$$W_{max} = - \Delta(U - TS)$$
.

при V=const

Последнее соотношение показывает, что в изотермических условиях максимальная работа процесса может рассматриваться как разность функций U — TS в начальном и конечном состояниях системы.

Wmax=0

ΛF≤ 0

2.10. Термодинамические потенциалы

$$TdS \ge dU + \delta W$$
, при T=const

$$d(TS) \ge dU + \delta W$$

или

$$d(TS) \ge dU + \delta W^* + PdV$$
.

Откуда

$$\delta W^* \le -(dU + PdV - d(TS)).$$

Максимальное значение полезной работы δW^*_{max} будет достигаться в обратимом процессе. Поэтому

$$\delta W^*_{max} = -(dU + PdV - d(TS)).$$

Если процесс протекает при постоянном

давлении (система изобарноизотермическая), то Р можно внести под знак дифференциала:

$$\delta W^*_{max} = -(dU + d(PV) - d(TS)),$$

$$\delta W^*_{max} = -(d(PV + U - TS)).$$

Учитывая, что U + PV = H, можно записать

$$\delta W^*_{max} = -(d(H - TS)).$$

G=H-TS

при p,T = const и отсутствии других работ, кроме работы расширения

ΔG≤ 0

2.10. Термодинамические потенциалы

Связь между ΔG и ΔF

 (ΔA)

Функции Гиббса и Гельмгольца ΔG и ΔA имеют полный дифференциал, следовательно, это функции состояния.

$$G = H - TS$$
,

$$G = U + PV - TS$$
.

Поскольку A = U - TS, то

$$G = A + PV.$$

При постоянном давлении

$$\Delta G = \Delta A + P\Delta V$$
,

для газов
$$P\Delta V = \Delta vRT$$
, следовательно,
 $\Delta G = \Delta A + \Delta vRT$.

Для процессов, идущих в конденсированных системах и для газовых реакций, у которых $\Delta v = 0$

$$\Delta G = \Delta A$$

2.10. Термодинамические потенциалы

□ Теплосодержание системы

$$\Delta H = \Delta G + T\Delta S$$
, $\Delta G = \Delta H - T\Delta S$

- ∆G энергия Гиббса, часть теплоты, которая может быть использована для совершения полезной работы в <u>изобарно-изотермическом</u> процессе
- Т∆S «несвободная» энергия, часть энергии, которая не может быть использована для совершения полезной работы, она используется для увеличения энтропии, рассеивается в окружающей среде в виде тепла

$$\Delta G = G_2 - G_1$$

- Если $\Delta G < 0$, т.е. $G_1 > G_2$, то процесс может протекать самопроизвольно
- Если $\Delta G > 0$, т.е. $G_1 < G_2$, то процесс не может протекать самопроизвольно
- ▶ЕСЛИ $\Delta G = 0$, т.е. $G_1 = G_2$, то система находится в состоянии равновесия

- 2. Химическая термодинамика
- 2.10. Термодинамические потенциалы
- Самопроизвольное протекание <u>изохорно-</u>
 <u>изотермического процесса</u> определяется энергией
 Гельмгольца (часть внутренней энергии, которую
 можно перевести в работу)

$$\Delta F = \Delta U - T\Delta S = F2 - F1$$

- □ Если $\Delta \mathbf{F}$ < $\mathbf{0}$, то процесс идет самопроизвольно в заданном направлении
- \square Если $\Delta \mathbf{F} > \mathbf{0}$, то самопроизвольный процесс невозможен,
- \square Если $\Delta \mathbf{F} = \mathbf{0}$, то имеет место термодинамическое равновесие.

- Термодинамические потенциалы или характеристические функции термодинамические функции, с помощью которых и их производных могут быть выражены все термодинамические свойства системы.
- Характеристические функции содержат в себе всю термодинамическую информацию о системе.
- □ Внутренняя энергия U (S,V) [Дж]
- **Энтальпия** H(S, p) = U + pV [Дж]
- □ Энергия Гельмгольца F (T,V) = U TS [Дж]
- **П** Энергия Гиббса G(T, p) = H TS = F + pV [Дж]
- Все термодинамические потенциалы не имеют абсолютного значения, т.к. определены с точностью до постоянной, которая равна внутренней энергии при абсолютном нуле
- □ Энтропия (в изолированной системе) S (V, U)

- 2. Химическая термодинамика
- 2.10. Термодинамические потенциалы

Основное уравнение термодинамики

- Описывает зависимость термодинамических потенциалов от их естественных переменных
- □ Объединяет первое и второе начала термодинамики
- □ Четыре эквивалентные формы уравнения:

$$dU = TdS - pdV$$

$$dH = TdS + Vdp$$

$$dF = -pdV - SdT$$

$$dG = Vdp - SdT$$

 Эти уравнения применимы только для закрытых систем, в которых совершается только механическая работа.

2.10. Термодинамические потенциалы

Если в системе происходит химическая реакция или система открыта (т.е. обменивается с окружающей средой веществом и энергией), то надо учесть зависимость термодинамических потенциалов от количества вещества пі

$$dU = TdS - pdV + \sum_{i} \mu_{i} dn_{i}$$

$$dH = TdS + Vdp + \sum_{i} \mu_{i} dn_{i}$$

$$dF = -pdV - SdT + \sum_{i} \mu_{i} dn_{i}$$

$$dG = Vdp - SdT + \sum_{i} \mu_{i} dn_{i}$$

где µ – химический потенциал (работа, которую необходимо затратить, чтобы добавить в систему ещё одну частицу)

2.10. Термодинамические потенциалы

 Химический потенциал характеризует приращение соответствующего термодинамического потенциала при изменении количества данного вещества при фиксированных естественных переменных и неизменных количествах остальных веществ

$$\mu_i = \left(\frac{\partial U}{\partial n_i}\right)_{S,V} = \left(\frac{\partial H}{\partial n_i}\right)_{S,p} = \left(\frac{\partial F}{\partial n_i}\right)_{T,V} = \left(\frac{\partial G}{\partial n_i}\right)_{T,p}$$

- Химический потенциал является движущей силой при массопереносе.
- По мере протекания процесса химический потенциал вещества выравнивается и в момент достижения равновесия становится одинаковым во всех сосуществующих фазах.

- 2. Химическая термодинамика
- 2.10. Термодинамические потенциалы

Смысл термодинамических потенциалов:

- зная любой из четырех потенциалов как функцию естественных переменных, можно с помощью основного уравнения термодинамики найти все другие термодинамические функции и параметры системы
- термодинамические потенциалы позволяют
 предсказывать направление термодинамических
 процессов

2.10. Термодинамические потенциалы

Любой термодинамический потенциал в необратимых самопроизвольных процессах, протекающих при постоянстве естественных переменных, уменьшается и достигает минимума при равновесии.

Потенциал	Естественные переменные	Условия самопроизвольности	Условия равновесия
U	S=const, V=const	dU < 0	dU = 0
Н	S=const, p=const	dH < 0	dH = 0
F	T=const, V=const	dF < 0	dF = 0
G • 18	T=const, p=const	dG < 0	dG = 0

- 2. Химическая термодинамика
- 2.10. Термодинамические потенциалы

Энтропия как критерий самопроизвольности и равновесия

Функ-	Изменение	Условия применимости	Условия	Условия
ция	т/д функции		самопроизвольности	равновесия
S	ΔS	Изолированная система, $\Delta U = 0$, $\Delta H = 0$	$\Delta S > 0$	$\Delta S = 0$

2.10. Термодинамические потенциалы

Если необходимо определить принципиальную возможность процесса, то по умолчанию условия считают изобарноизотермическими и определяют знак ΔG.

Критерий принципиальной возможности процесса dG < 0.

Изобарно-изотермические условия - наиболее простые и легко осуществимые. Им соответствуют и наиболее часто встречающиеся процессы — реакции в открытых сосудах при поддержании постоянства температуры.

Необходимо понимать, что отрицательное значение ΔG говорит именно о принципиальной возможности процесса, но не о скорости его. Могут иметь место энергетические затруднения, кинетические затруднения, которые мешают течению процесса. Если ΔG >0, то реакция принципиально невозможна. При ΔG >≈ 0 можно как-то поменять условия (P, T), чтобы реакция осуществилась.

- 2. Химическая термодинамика
- 2.10. Термодинамические потенциалы

Как определить предел протекания этого процесса и охарактеризовать состояние равновесия?

При достижении равновесия энтропия системы достигает максимального значения. В состоянии равновесия энтропия не меняется. Остальные характеристические функции при равновесии имеют минимальное значение. Спедовательно, критерии равновесия:

```
- при V, U = const максимум, dS = 0, d^2S < 0;

- при V, S = const минимум, dU = 0, d^2U > 0;

- при P, S = const минимум, dH = 0, d^2H > 0;

- при V, T = const минимум, dA = 0, d^2A > 0;

- при P, T = const минимум, dG = 0, d^2G > 0.
```

Характеристические функции связаны с условиями равновесия. В частности, далее будет показано, что функция Гиббса связана с константой равновесия Крпроцесса уравнением

$$\Delta G^{\circ} = -RT \ln K_{p}$$

- 2. Химическая термодинамика
- 2.10. Термодинамические потенциалы
- Как через производные характеристических функций получить другие термодинамические параметры, характеризующие данную систему и процесс?

Энтальпия. Поскольку энтальпия функция энтропии и давления,

$$H = f(S,P)$$
,

TO

$$dH = \left(\frac{\partial H}{\partial P}\right)_S dP + \left(\frac{\partial H}{\partial S}\right)_P dS$$

Учитывая, что dH = TdS + VdP (1.64), можно записать:

$$\left(\frac{\partial H}{\partial P}\right)_{S} = V;$$

$$\left(\frac{\partial H}{\partial S}\right)_{P} = T.$$

Функция	Собст- венные перемен- ные	Самопро- извольный процесс	Условие равновесия Производные	
S	V,U	dS>0	dS=0 d ² S<0	$\left(\frac{\partial S}{\partial U}\right)_{V} = \frac{1}{T} \left(\frac{\partial S}{\partial V}\right)_{U} = \frac{p}{T}$
U	V,S	dU<0	dU=0 d ² U>0	$\left(\frac{\partial U}{\partial V}\right)_{s} \mathbf{p} \qquad \left(\frac{\partial U}{\partial S}\right)_{r} - \mathbf{T}$
Н	P,S	dH<0	dH=0 d ² H>0	$\left(\frac{\partial H}{\partial P}\right)_{S} = \mathbf{V} \qquad \left(\frac{\partial H}{\partial S}\right)_{P} = \mathbf{T}$
Α	V,T	dA<0	dA=0 d ² A>0	$\left(\frac{\partial A}{\partial T}\right)_{V} = -S \qquad \left(\frac{\partial A}{\partial V}\right)_{T} = -P$
G	P,T	dG<0	dG=0 d ² G>0	$\left(\frac{\partial G}{\partial T}\right)_{p} = \text{_S} \left(\frac{\partial G}{\partial P}\right)_{T} = V$

$$Ag_{yy} + 1/2Cl_2 = AgCl_{yy}$$

Частная производная функции Гиббса по температуре при постоянном давлении равна взятому с обратным знаком изменению энтропии:

$$\left(\frac{\partial \Delta G^0}{\partial T}\right)_{p} = -\Delta S^0$$
.

Производная $\left(\frac{\partial \Delta G^0}{\partial T}\right)_{\!\!\!p}$ носит название «температурный коэф-

фициент функции Гиббса». Эта величина показывает, как изменяется функция Гиббса при изменении температуры.

Воспользуемся справочными данными. Изменение энтропии в ходе реакции $\Delta S^0 = -58 \text{ Дж/(моль K)}$, следовательно,

$$\left(\frac{\partial \Delta G^0}{\partial T}\right)_p = 58 \text{ Дж/(моль K)}.$$

Значение температурного коэффициента больше нуля, следовательно, числитель и знаменатель дроби имеют одинаковый знак. Таким образом, функция Гиббса с ростом температуры увеличивается, то есть повышение температуры не благоприятствует протеканию реакции.

Влияние давления

$$\left(\frac{\partial G}{\partial P}\right)_T = V.$$

При постоянстве температуры уравнение можно записать как

$$\frac{dG}{dP} = V$$

Разделим переменные

$$dG = VdP$$

и проинтегрируем в пределах от стандартного давления $P^0 = 1$ атм. (учтем, что при P^0 (в стандартном состоянии) значение функции Гиббса равно G^0) до некоторого давления P и соответствующего этому давлению значения G. Заменим объем по уравнению Менделеева-Клапейрона. Поскольку температура (по условию) постоянна, произведение RT можно вынести из-под интеграла:

$$\begin{split} \int\limits_{0^*}^G dG &= \int\limits_{P^*}^P V dP = \int\limits_{P^*}^P \frac{RT}{P} dP = RT \int\limits_{P^*}^P \frac{1}{P} dP \,, \\ G - G^\circ &= RT \ln \frac{P}{P^\circ} \,. \end{split} \qquad G = G^\circ + RT \ln \widetilde{P} \,, \end{split}$$

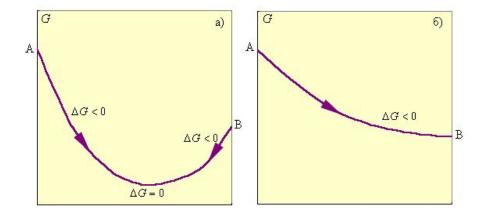
- 2. Химическая термодинамика
- 2.10. Термодинамические потенциалы
- В химических процессах одновременно изменяются энтальпия (энергетический запас системы) и энтропия (не совершающая работу энергия).
- □ Анализ уравнения

$$\Delta G = \Delta H - T \Delta S$$

позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление химической реакции.

- Стандартная энергия Гиббса образования № (при р=1 бар и Т=298К) это изменение энергии Гиббса реакции образования 1 моль соединения из простых веществ, устойчивых при стандартных условиях
- \Box $\Delta G_{f,298}^{0}$ простых веществ принимают равным нулю
- \Box $\Delta G_{f,298}^{0}$ можно найти в соответствующих справочниках
- Энергия Гиббса химической реакции является функцией состояния, т.е. её изменение в процессе не зависит от пути его протекания, а определяется исходным и конечным состоянием системы:

$$\Delta G_{ ext{peakции}}^0 = \sum n_j \, \Delta G_{f,j}^0 ext{(продукты)} - \sum n_i \, \Delta G_{f,i}^0 ext{(исходные)}$$


2.10. Термодинамические потенциалы

□ По определению энергия Гиббса

$$\Delta G_{
m peak uuu}^0 = \Delta H_T^0 - T \Delta S_T^0$$

- □ Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH), и энтропийным TΔS, обусловленным увеличением беспорядка в системе вследствие роста ее энтропии.
- Если ∆G < 0, то процесс идет самопроизвольно в заданном направлении; чем больше |∆G|, тем полнее вещества реагируют между собой; реакции, сопровождающиеся большой потерей энергии Гиббса, протекают до конца и бурно, иногда со взрывом;</p>
- □ Если $\Delta G > 0$, то процесс невозможен, самопроизвольно идет обратный процесс, а прямая реакция не идет совсем;
- \Box Если $\Delta G = 0$, то имеет место термодинамическое равновесие.
- oxdots Т.о., величина $\Delta {f G}$ показывает меру реакционной способности взаимодействующих веществ, а ее знак направленность данного процесса

- Изотермический равновесный процесс без затраты внешних сил может протекать самопроизвольно только в направлении убывания энергии Гиббса до достижения ее минимума, которому отвечает термодинамическое равновесное состояние системы.
- Состояние термодинамического равновесия чрезвычайно устойчиво, так как при постоянстве давления и температуры система выйти из равновесного состояния не может, потому, что выход равен возрастанию энергии Гиббса.
- Чтобы система вышла из состояния равновесия, необходимо изменить какие-либо внешние факторы (давление, температуру, концентрации веществ).

Изменение энергии Гиббса в обратимом и необратимом процессе

1.	ΔH < 0 (экзотермичная реакция) ΔS > 0 ΔG < 0	Реакция с выделением теплоты и увеличением энтропии возможна при любой температуре $\Delta G < 0$
2.	ΔH > 0 (эндотермичная реакция) ΔS < 0 ΔG > 0	Реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях $\Delta G > 0$
3.	$\Delta H < 0$ (экзотермичная реакция) $\Delta S < 0$ $\Delta G > 0$, $\Delta G < 0$ (знак ΔG зависит от соотношения ΔH и $T\Delta S$)	Реакция с выделением теплоты и уменьшением энтропии Возможна, если ΤΔS < ΔH возможна при низкой температуре
4.	$\Delta H > 0$ (эндотермичная реакция) $\Delta S > 0$ $\Delta G > 0$, $\Delta G < 0$ (знак ΔG зависит от соотношения ΔH и $T\Delta S$)	Реакция с поглощением теплоты и увеличением энтропии Возможна, если $ T\Delta S > \Delta H $ возможна при высокой температуре

Знак ΔН	Знак ΔЅ	Знак Δ <i>G</i>	Самопроизвольность реакции	Пример
-	+	Всегда «»	Самопроизвольна при любых температурах	2O ₃ (r) →3O ₂ (r)
+		Всегда «+»	Несамопроизвольна при любых температурах	3O ₂ (r) →2O ₃ (r)
-	-	«-» при низких температурах, «+» при высоких температурах	Самопроизвольна при низких температурах, несамопроизвольна при высоких температурах	$2H_2(r) + O_2(r) \rightarrow$ $\rightarrow 2H_2O(r)$
+	+	«+» при низких температурах, «-» при высоких температурах	Несамопроизвольна при низких температурах, самопроизвольна при высоких температурах	$2H_2O(r) \rightarrow \rightarrow 2H_2(r) + O_2(r)$

2.10. Термодинамические потенциалы

Рассмотрим реакцию

$$2H_2(\Gamma) + O_2(\Gamma) \rightarrow 2H_2O(\mathcal{K})$$

- □ Изменение стандартной энергии Гиббса для неё равно ΔG^0 = -474,38 кДж. Поскольку ΔG <<0, при нормальных условиях реакция должна протекать самопроизвольно. Известно, однако, что она в этих условиях практически не идёт. Но стоит внести в смесь подходящий катализатор (мелкодисперсную платину) или просто поднести горящую спичку, реакция произойдёт со взрывом: это гремучий газ!
- Термодинамические расчёты позволяют сделать вывод, возможна или невозможна в принципе данная реакция
- Если термодинамика утверждает, что какая-либо реакция термодинамически разрешена, то можно попытаться подобрать условия (подходящий катализатор или температуру) и осуществить её. Это было сделано для многих важных технологических процессов.
- А в том случае, когда реакция термодинамически запрещена, нет смысла даже искать катализатор.
- Проблемой изучения скоростей и механизмов химических реакций занимается другая область физической химии — химическая кинетика.

2.10. Расчет ∆G в химических реакциях

$$\Delta G = \Delta H - T \Delta S$$
.

Рассмотрим в качестве примера расчет ΔG^0 для реакции

$$H_2 + 1/2 O_2 = H_2 O(x)$$

Символ «⁰», как и прежде, указывает на стандартное состояние всех участников реакции. (Вспомните, как вводилось ранее стандартное состояние).

Известно, что стандартная энтальпия образования воды

$$\Delta H^0 = -285 800 Дж/моль.$$

Используя табличные значения стандартных энтропий участников реакции, выраженных в энтропийных единицах, э.е. (Дж/(моль-К)): $S_{\rm H_2}^0 = 126$ э.е., $S_{\rm O_2}^0 = 205$ э.е., $S_{\rm HO(x)}^0 = 69,9$ э.е., вычислим ΔS^0 , используя $\Delta S^0_{\rm x.p} = \sum v_j S^0_j - \sum v_i S^0_i$. $\Delta S^0 = 69,9 - (126 + 1/2 \cdot 205) = -158,6$ э.е.

И

$$T\Delta S^0 = -47\ 262\ Дж/моль.$$

Таким образом,

$$\Delta G^0 = -285\,800 - (-47\,262) = -238\,538\,\text{Дж/моль}.$$

Химическая термодинамика 10. Расчет ∆G в химических реакциях

Во втором способе расчета ΔG химических реакций используют то, что эту величину можно рассчитать по известным величинам ΔG других реакций, комбинация уравнений которых дает интересующее нас уравнение реакции (аналогично расчету тепловых эффектов реакции). При этом мы исходим из свойств этой функции как функции состояния: считаем ΔG независимым от пути проведения процесса.

Наиболее удобно использовать для этих целей ΔG реакций образования ($\Delta G_{\text{обр}}$). С реакциями образования мы знакомились, когда изучали 1-е следствие из закона Гесса. Напоминаем, что реакциями образования в термодинамике считаются такие реакции, в которых 1 моль вещества в стандартном состоянии при данной температуре образуется из простых веществ, взятых в их стандартном состоянии при той же температуре. Реакции образования часто бывают гипотетическими (т.е. не идущими реально), а лишь соответствующими приведенному выше определению. В термодинамических таблицах приводятся изменения энергии Гиббса для реакций образования при стандартных условиях ($\Delta G_{\text{обр}}^0$). Понятно, что $\Delta G_{\text{обр}}^0$ простых веществ равно нулю.

2.10. Расчет ∆G в химических реакциях

Используя $\Delta G_{\text{обр}}^{0}$, можно рассчитать стандартное изменение энергии Гиббса (ΔG^{0}) любой химической реакции. Эта величина равна разности стандартных энергий Гиббса для реакций образования продуктов и исходных веществ с учетом стехиометрических коэффициентов:

$$\Delta G^0 = \sum_{j} V_{j} \Delta G^0_{\text{ofp-}j} - \sum_{i} V_{i} \Delta G^0_{\text{ofp-}i} .$$

В качестве примера рассчитаем (ΔG^0) важного биохимического процесса — реакции окисления глюкозы: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O(ж)$:

$$\Delta G^0 = 6\Delta G_{\text{обр CO}_2}^0 + 6\Delta G_{\text{обр H}_2\text{O(ж)}}^0 - \Delta G_{\text{обр.глюкозы}}^0 - 6\Delta G_{\text{обр O}_2}^0$$
;
 $\Delta G^0 = 6(-396,9) + 6(-238,1) - 913,1 = -2.885,2 \text{ кДж/моль}.$

В биологических системах такое большое количество энергии освобождается не сразу, а небольшими порциями в сложном ряду химических превращений.

2.10. Расчет ΔG в химических реакциях

Для расчета изменения энергий Гиббса реакций при температурах, отличающихся от стандартных, ΔG_T , надо знать величины теплоемкостей участников реакции в интервале температур от 298 К до T. Расчетные соотношения получают следующим образом:

$$\Delta G_T = \Delta H_T - T \Delta S_T$$

$$\Delta H_T = \Delta H_{298}^0 + \int_{298}^T \Delta c_p dT$$

И

$$\Delta S_T = \Delta S_{298}^0 + \int_{298}^T \frac{\Delta c_p}{T} dT,$$

TO

$$\Delta G_T = \Delta H_{298}^0 - T \Delta S_{298}^0 + \int_{298}^T \Delta c_p dT - T \int_{298}^T \frac{\Delta c_p}{T} dT.$$

В термодинамике часто используют так называемую приведенную функцию Гиббса (приведенную энергию Гиббса, или приведенный изобарный потенциал). Эта величина обозначается Φ^0 и также может быть найдена по справочнику. Приведенная функция Гиббса равна

$$\Phi^o = \frac{G_T^o - H_0^o}{T}.$$

где $G_{\rm T}^0$ - мольная функция Гиббса при давлении 1 атм., H_0^0 — мольная энтальпия образования вещества при давлении 1 атм. и абсолютном нуле.

Значение ΔG реакции можно выразить через приведенные функции Гиббса:

$$\Delta G^{0} = T \Delta \Phi^{0} + \Delta H_{0}^{0}.$$

По этому уравнению пользуясь справочными данными можно подсчитать ΔG реакции при любой температуре.

2.11. Практические вопросы

1. Каковы различия между ΔF и ΔG химических реакций при T= const? Из определений ΔF и ΔG следует, что $\Delta G = \Delta F + p \Delta V$.

В реакциях в конденсированных средах (твердых и жидких) обычно изменением объема можно пренебречь ($\Delta V = 0$). Тогда

$$\Delta F = \Delta G$$
.

Если в реакциях участвуют газы и можно считать их идеальными, то

$$\Delta G = \Delta F + \Delta v R T$$
.

При $\Delta v = 0$, т.е. когда реакция идет без изменения числа молей,

$$\Delta F = \Delta G$$
.

2.11. Практические вопросы

Какие выводы можно сделать, получив значения термодинамических критериев возможности самопроизвольного протекания процессов?

Если термодинамика дает отрицательный ответ на вопрос о возможности самопроизвольного протекания процесса ($\Delta F > 0$ или $\Delta G > 0$), это означает, что без внешнего подвода энергии процесс невозможен. Процесс может самопроизвольно протекать только в обратном направлении.

Если термодинамика дает положительный ответ ($\Delta F < 0$ или $\Delta G < 0$), это говорит только о возможности протекания процесса. Но часто в реальных условиях такой процесс не идет. Например, для реакции образования CO_2 $\Delta G^0 = -395,9$ кДж/моль. Но графит с кислородом при 298 К и p=1 атм не реагирует. Чтобы процесс шел, необходимо создать условия для увеличения скорости (запал, катализаторы и т.д.).

2.11. Практические вопросы

3. Может ли идти процесс, если $\Delta F > 0$ или $\Delta G > 0$?

Может, но не самопроизвольно. Для его проведения надо затратить энергию. Пример — процесс фотосинтеза, идущий в растениях под воздействием солнечной энергии. Другой пример протекание реакций, характеризующихся $\Delta G > 0$, при сопряжении их с реакциями, для которых $\Delta G < 0$. При этом сумма величин ΔG для всех стадий процесса, включая сопряженные реакции, отрицательна. Например, для синтеза сахарозы из глюкозы и фруктозы:

Глюкоза + Фруктоза
$$\rightarrow$$
 Сахароза + H_2O

 $\Delta G^0 = 21$ кДж/моль и, следовательно, прямая реакция самопроизвольно протекать не может. Вместе с тем известно, что в организмах этот процесс происходит. Сопряженной реакцией в этом случае является гидролиз аденозинтрифосфата (АТФ) с образованием АДФ и фосфорной кислоты (Ф):

$$AT\Phi + H_2O \rightarrow AД\Phi + \Phi$$
; $\Delta G^0 = -50.4 \text{ кДж/моль}.$

Сопряжение осуществляется путем образования в качестве промежуточного соединения глюкозо-1-фосфата. Реакция идет в 2 стадии:

(1-я стадия):
$$AT\Phi + \Gamma$$
люкоза $\rightarrow \Gamma$ люкозо-1- $\Phi + AД\Phi \Delta G^0 = -29,4$ кДж/моль; (2-я стадия): Γ люкозо-1- $\Phi + \Phi$ руктоза $\rightarrow C$ ахароза $+ \Phi \Delta G^0 = 0$.

Так как изменение G является величиной аддитивной, суммарный процесс можно записать в виде суммы двух стадий:

$$AT\Phi + \Gamma$$
люкоза + Φ руктоза = Сахароза + $AД\Phi + \Phi \Delta G^0 = -29,4$ кДж/моль.

2.11. Практические вопросы

4. В каких случаях ΔH (или ΔU) является критерием самопроизвольности процесса?

В общем случае критерием самопроизвольности является величина ΔG (или ΔF) процесса.

Так как $\Delta G = \Delta H - T\Delta S$ (или $\Delta F = \Delta U - T\Delta S$), то при $\Delta S = 0$ (в изоэнтропийных условиях) $\Delta G = \Delta H$ (или $\Delta F = \Delta U$). В этом случае ΔH (или ΔU) является критерием самопроизвольности процесса. При этом самопроизвольно идут экзотермические реакции ($\Delta H < 0$, $\Delta U < 0$).

2.11. Практические вопросы

В каких случаях ∆S является критерием самопроизвольности процесса?
 Рассуждения аналогичны приведенным в п. 4.

Так как $\Delta G = \Delta H - T \Delta S$ (или $\Delta F = \Delta U - T \Delta S$), то при отсутствии тепловых эффектов реакций ($\Delta H = 0$, $\Delta U = 0$) $\Delta G = -T \Delta S$ (или $\Delta F = -T \Delta S$). В этом случае ΔS является критерием самопроизвольности процесса. При этом самопроизвольно идут процессы с ростом энтропии ($\Delta S > 0$), т.е. процессы, связанные с разложением веществ, их деструкцией, дезагрегаций.

2.11. Практические вопросы

6. Каковы условия самопроизвольного протекания экзотермических реакций ($\Delta H < 0$, $\Delta U < 0$)?

Выберем для определенности изобарные условия протекания экзотермических реакций: $\Delta H < 0$. При этом возможность условия самопроизвольного протекания реакции определяется знаком $\Delta G = \Delta H - T\Delta S$.

Рассмотрим, как меняется знак ΔG при варьировании величины ΔS .

- а) Если $\Delta S > 0$, то $\Delta G = \Delta H T \Delta S < 0$. Процесс идет самопроизвольно.
- 6) Если $\Delta S = 0$, то $\Delta G = \Delta H T \Delta S < 0$. Процесс идет самопроизвольно.
- в) Если $\Delta S < 0$, то $\Delta G = \Delta H T \Delta S$ может иметь различные знаки в зависимости от абсолютной величины $T \Delta S$:

 $|\Delta H| > |T\Delta S|$. При этом $|\Delta G| < 0$. Процесс идет самопроизвольно.

 $|\Delta H| = |T\Delta S|$. При этом $\Delta G = 0$. Состояние равновесия.

 $|\Delta H| < |T\Delta S|$. При этом $\Delta G > 0$. Процесс не идет слева направо.

Таким образом, экзотермические реакции термодинамически запрещены только при значительном уменьшении энтропии, например, в некоторых процессах структурирования, образования дополнительных связей и т.д.

2.11. Практические вопросы

Еще один важный выход из этих рассуждений: в изолированных системах самопроизвольно могут идти процессы с уменьшением энтропии, если они сопровождаются значительным тепловым эффектом. Это особенно важно для понимания возможности самопроизвольного усложнения систем, например, в процессе роста живых организмов. В этом случае источником энергии могут являться все те же богатые энергией эфиры фосфорной кислоты (АТФ, АДФ, креатин- и аргининфосфаты и др.). Кроме того, при рассмотрении реальных систем следует иметь в виду, что они практически не бывают изолированными, и имеется возможность подачи энергии извне.

2.11. Практические вопросы

 Каковы условия самопроизвольного протекания эндотермических реакций (∆H > 0)?

Выберем для определенности изобарные условия протекания эндотермических реакций: $\Delta H > 0$. При этом возможность условия самопроизвольного протекания реакции определяется знаком $\Delta G = \Delta H - T\Delta S$

Как и в предыдущем случае, рассмотрим, как меняется знак ΔG при варьировании величины ΔS .

а) Если $\Delta S > 0$, то $\Delta G = \Delta H - T \Delta S$ может иметь различные знаки в зависимости от абсолютной величины $T \Delta S$:

 $\Delta H < T\Delta S$. При этом $\Delta G < 0$. Процесс идет самопроизвольно.

 $\Delta H = T\Delta S$. При этом $\Delta G = 0$. Состояние равновесия.

 $\Delta H > T \Delta S$. При этом $\Delta G > 0$. Процесс не идет самопроизвольно слева направо.

- 6) Если $\Delta S = 0$, то $\Delta G = \Delta H T \Delta S > 0$. Процесс не идет самопроизвольно слева направо.
- в) Если $\Delta S < 0$, то $\Delta G = \Delta H T \Delta S > 0$. Процесс не идет самопроизвольно слева направо.

Таким образом, эндотермические реакции идут самопроизвольно только при значительном увеличении энтропии в реакции, например, в процессах разложения, деструкции, дезагрегации.

2.11. Практические вопросы

- 8. Как влияет повышение температуры на ΔU , ΔH , ΔS , ΔG и ΔF химических реакций?
- а) Зависимость ΔU от температуры выражается уравнением Кирхгоффа (16a):

$$\Delta U_T = \Delta U_{298}^0 + \Delta c_V (T - 298).$$

С ростом температуры величина ΔU растет при $\Delta c_V > 0$ и падает при $\Delta c_V < 0$. При $\Delta c_V = 0$ величина ΔU не зависит от температуры.

 б) Зависимость ΔH от температуры выражается уравнением Кирхгоффа

$$\Delta H_T = \Delta H_{298}^0 + \Delta c_p (T - 298).$$

С ростом температуры величина ΔH растет при $\Delta c_p > 0$ и падает при $\Delta c_p < 0$. При $\Delta c_p = 0$ величина ΔH не зависит от температуры.

2.11. Практические вопросы

в) Зависимость \(\Delta S \) от температуры выражается.

$$(\Delta S_{x,p})_T = \Delta S_{x,p}^0 + \Delta c_p \ln \frac{T}{298}.$$

С ростом температуры ΔS растет при $\Delta c_p > 0$ и падает при $\Delta c_p < 0$. При $\Delta c_p = 0$ величина ΔS не зависит от температуры.

г) Зависимость ΔF от температуры выражается у

$$\Delta F_T = \Delta U_{298}^0 - T \Delta S_{298}^0 + \int_{298}^T \Delta c_V dT - T \int_{298}^T \frac{\Delta c_V}{T} dT.$$

Часто можно пренебречь двумя последними слагаемыми из-за их незначительной величины по сравнению с первыми двумя слагаемыми:

$$\Delta F_T \approx \Delta U_{298}^0 - T \Delta S_{298}^0$$
.

Приближенно можно заключить, что с ростом температуры ΔF растет при $\Delta S < 0$ и падает при $\Delta S > 0$. При $\Delta S = 0$ величина ΔF не зависит от температуры.

2.11. Практические вопросы

д) Зависимость ΔG от температуры выражается

$$\Delta G_T = \Delta H_{298}^0 - T \Delta S_{298}^0 + \int_{298}^T \Delta c_p dT - T \int_{298}^T \frac{\Delta c_p}{T} dT.$$

Часто можно пренебречь двумя последними слагаемыми из-за их меньшей величины по сравнению с первыми двумя слагаемыми:

$$\Delta G_T \approx \Delta H_{298}^0 - T \Delta S_{298}^0.$$

Приближенно можно заключить, что с ростом температуры ΔG растет при $\Delta S < 0$ и падает при $\Delta S > 0$. При $\Delta S = 0$ величина ΔG не зависит от температуры.