СПЛАВЫ НА ОСНОВЕ МАГНИЯ И ТИТАНА

Свойства магния

- Магний один из наиболее распространённых металлов в природе;
- Магний имеет малую плотность, в 1,6 раза легче алюминия, хорошо обрабатывается резанием, обладает отличной способностью воспринимать и поглощать динамические нагрузки, вибрации и колебания, обладает химической стойкостью против щелочей, керосина и некоторых масел;
- Главным недостатком является его низкие механические свойства: низкая твёрдость HD 30, малая устойчивость против коррозии, магний воспламеняется при температуре 550-600 градусов и сгорает ярко белым пламенем;
- Магний в металлургии применяется в качестве легирующего компонента, а в машиностроении для получения сверх лёгких магниевых сплавов.

Сплавы на основе

магния

- Сплавы на основе магния подразделяются на деформируемые и литейные;
- Благодаря малой плотности, достаточно высокой прочности и хорошей обрабатываемости резанием, сплавы широко применяются в машиностроении и особенно в самолётостроении;
- На основе магниевых сплавов изготавливают колёса машин и самолётов, поршни, шатуны ...;
- Самовоспламеняемость магния при плавке, устраняется плавкой под специальными флюсами;
- Для повышения механических и антикоррозионных свойств в магниевые сплавы вводят марганец, титан, бериллий, цирконий, церий, торий ..., а так же наносят на сплавы защитные покрытия;
- Прочность и твёрдость магниевых сплавов повышаются после термической обработки.
 Литейные свойства магниевых сплавов ниже, чем сплавов на основе алюминия

Применение магниевых сплавов

 Деформируемые магниевые сплавы маркируются буквами МА (магниевые деформируемые), а литейные Мл (магниевые литейные). Цифры, следующие за буквами, показывают порядковый номер сплава.

Химический состав, механические свойства и примерное назначение некоторых магниевых сплавов

Группа сплава	Марка	Основные компоненты					Механические свойства		П
		алюминий	цинк	марганец	другие	ма гний	σ _B , МН/м²	δ, %	Примерное назначение
Деформи- руемые Литейные	MA1	-	_	1,3—2,5	_	Остальное	220	8	Листы, прутки, профи- ли, поковки и штамповки
	MA5	7,8-9,2	0,2-0,8	0,15-0,50	_	»	310	8	Прутки, поковки и
	MA8	_	_	1,3—2,2	церий 0,15—0,35	»	240	14	штамповки Листы, плиты, трубы, прутки
	Мл3	2,5—3,5	0,5—1,5	0,15-0,50		»	160	6	Детали несложной кон- фигурации, повышенной
	Мл5	7,5—9,0	0,2-0,8	0,15-0,50		»	230	5	герметичности Детали самолетов, кор-
	Мл11	_	0,2—0,7	-	цирконий 0,4—1,0 сумма РЗМ 2,5—4,0	»	140	3	пуса приборов Детали двигателей и приборов, нагревающиеся до 250—300°С

Титан

- По распространению в природе, титан занимает четвёртое место, после алюминия, железа и магния;
- Из всех металлов, используемых в технике, титан обладает наиболее высокой удельной прочностью, и превосходит даже легированные стали;
- Механические свойства титана зависят от содержания в нём примесей – кислорода, азота и углерода. Они повышают прочность, но снижают пластичность титана. Вредной примесью для титана является водород, снижающий ударную вязкость;
- Титан обладает исключительно высокой коррозионной стойкостью в атмосфере и даже морской воде и растворах многих солей. По коррозионной стойкости титан превышает даже легированные нержавеющие стали и очень близок к благородным металлам;
- Сочетание небольшой плотности с достаточной прочностью, высокой температурой плавления и отличной коррозионной стойкостью являются важнейшим свойством титана, как конструкционного материала;
- Недостатком титана является снижение прочности при повышении температуры. Для устранения данного недостатка на основе титана делают сплавы;

Сплавы на основе титана

- Сплавы на основе титана по сравнению с чистым титаном обладают более высокими механическими свойствами, жаропрочностью, более высокой коррозионной стойкостью.
 Пластичность и вязкость титановых сплавов ниже, чем у титана;
- Наибольшее распространение в технике получили сплавы титана с алюминием, молибденом, ванадием, хромом, железом, оловом и другими компонентами;
- Состав некоторых сплавов, обрабатываемых давлением:
 - - ОТ4-0 (0,2-1,4% алюминия, 0,2-1,3% марганца);
 - ВТ5-1 (4,3-6; алюминия, 2,0-3,0% олова);
 - *ВТ5 (4,3-6,2% алюминия);*
 - BT14 (3,5-6,3% алюминия, 2.5-3,8% молибдена, 0,9-1,9% ванадия);
- Литейные сплавы на основе титана обладают более низкими механическими свойствами, чем деформируемые;
- Самый дешёвый сплав ВТЛ5Л (5% алюминия) обладает достаточной пластичностью и вязкостью, но прочность его не велика;
- К наиболее прочным литейным сплавам относят:
 - BT3-1Л (5,5% AI, 2.0% Cr, 2% Mo, 0,2% Si);
 - BT21Л (6,6% AI, 0,35% Cr, 0,7% Mo, 1,2% V, 5,0%Zr, 0,35%Fe);

Применение титана

- Наиболее широкое применение титан нашёл в авиационной и космической технике;
- Титан и его сплавы являются наиболее перспективным материалом для объектов, собираемых непосредственно в космосе;
- Широкое применение титан нашёл в химической промышленности: ёмкости, трубопроводы, детали насосов ...;
- Большое количество титана используется для производства титановых белил;
- В металлургии титан применяется для производства карбидов – очень твёрдых сплавов;
- Использование титана и его сплавов в технике сдерживается пока ещё их относительно высокой стоимостью.