
Technology Mapping



Aug-23 ENEE 644 2

Outline

> What is Technology Mapping?
> Technology Mapping Algorithms
> Technology Mapping as Graph Covering

= Choosing base functions
= Creating subject graph
= Tree covering problem
= Decomposition
= Delay Optimization



Aug-23 ENEE 644 3

Technology Mapping
> Technology mapping is the phase of logic synthesis 

when gates are selected from a technology library to 
implement the circuit.

> Technology mapping is normally done after 
technology independent optimization.

> Why technology mapping?
= Straight implementation may not be good. For example,  

F = abcdef as a 6-input AND gate cause a long delay.
= Gates in the library are pre-designed, they are usually 

optimized in terms of area, delay, power, etc.
• Fastest gates along the critical path, area-efficient 

gates (combination) off the critical path.



Aug-23 ENEE 644 4

Technology Mapping Algorithms

> Basic Requirements:
= Provide high quality solutions (circuits).
= Adapt to different libraries with minimal effort.

• Library may have irregular logic functions.
= Support different cost functions.

• Transistor count, level count, detailed models for 
area, delay, and power, etc.

= Be efficient in run time.
> Two Approaches:

= Rule-based techniques
= Graph covering techniques (DAG)



Aug-23 ENEE 644 5

Outline

> What is Technology Mapping?
> Technology Mapping Algorithms
> Technology Mapping as Graph Covering

= Choosing base functions
= Creating subject graph
= Tree covering problem
= Decomposition
= Delay Optimization



Aug-23 ENEE 644 6

Base Functions

> Base function set is a set of gates which is 
universal and is used to implement the gates in 
the technology library.
= 2-input AND, 2-input OR, and NOT
= 2-input NAND (and NOT)

> Recall: A gate (or a set of gates) is universal if it can 
implement all the Boolean functions, or equivalently, it 
can implement 2-input AND, 2-input OR, and NOT.

> Choose of base functions:
= Universal: able to implement any functions.
= Optimal: implement functions efficiently.

• Introduce redundant gates: 2-input NAND and NOT. 



Aug-23 ENEE 644 7

Subject Graph

> Subject graph is the graph representation of a 
logic function using only gates from a given base 
function set. (I.e., the nodes are restricted to 
base functions.).

> For a given base function set, subject graph for a 
gate may not be unique.
=  NAND(a,b,c,d)  

=NAND(NOT(NAND(a,b)),NOT(NAND(c,d))) 
=NAND(a,NOT(NAND(b,NOT(NAND(c,d)))))

> All distinct subject graphs of the same logic have 
to be considered to obtain global optimal design.



Aug-23 ENEE 644 8

Example: Subject Graph

t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

F

f

g
d

e

h

b
a

c

t1

t2

t3

t4

inv

nand

base



Aug-23 ENEE 644 9

Pattern Graph

> For any library gate, its logic function can be 
represented by a graph where each node is one 
of the base functions. This graph is called a 
pattern graph for this library gate.

A pattern graph is a subject graph when the function 
represents a library gate. 

> Similarly, all pattern graphs for the same library 
gate have to be considered.

> Tip on choosing base function set: Choose those 
that provide a small set of pattern graphs.



Aug-23 ENEE 644 10

Example: Pattern Graphs for the Library
inv(1) nand3 (3)

oai22 (4)

nor(2)
nor3 (3)

xor (5)

aoi21 (3)

nand2(2)

… … 



Aug-23 ENEE 644 11

Cover

> A cover is a collection of pattern graphs so that:
= every node of the subject graph is contained in one (or 

more) pattern graphs 
= each input required by a pattern graph is actually an 

output of some other pattern graph (i.e. the inputs of 
one library gate must be outputs from other gates.)

> Cost of a Cover
= Area: total area of the library gates used (I.e. gates in 

the cover).
= Delay: total delay along the critical path.
= Power: total power dissipation of the cover.



Aug-23 ENEE 644 12

Example: Subject Graph Cover by Base

 F

f

g
d

e

h

b
a

c

Total cost = 23
(7 inverters and
 8 NANDs)

t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

inv (1)

nand (2)

base



Aug-23 ENEE 644 13

Example: Better Cover Using the Library

F

f

g
d

e

h

b
a

c

aoi22(4)

and2(3)

or2(3)

or2(3)

Total cost = 18
nand2(2)

nand2(2)

inv(1)

t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’



Aug-23 ENEE 644 14

Example: Alternate Covering

F

f

g
d

e

h

b
a

c

nand3(3)

oai21(3)

oai21 (3)
Total cost = 15

and2(3)

inv(1) nand2(2)

t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’



Aug-23 ENEE 644 15

Graph Covering Formation

> Technology mapping problem: Find a minimum 
cost cover of the subject graph by choosing from 
the collection of pattern graphs for all the gates in 
the library.

> DAG-covering-by-DAG is hard
NP-hard for a simple case:
= Only 3 pattern graphs (NOT, 2-input NAND, 2-input NOR)
= Each node in the subject graph has no more than 2 

fanins and fanouts.

> Do We Need to Solve the Problem Optimally?
= Input logic from technology-independent optimization
= Numerous subject graphs for the same logic network



Aug-23 ENEE 644 16

Generic Algorithmic Approach 

> Represent each logic function of the network as a 
subject graph (DAG);

> Generate all possible pattern graphs (DAGs)for 
each gate in the technology library;

> Find an optimal-cost covering of the subject DAG 
using the collection of pattern DAGs.

Question: how to solve this NP-hard problem?
= If subject DAG and pattern DAG’s are trees, an 

efficient algorithm exists.



Aug-23 ENEE 644 17

Optimal Tree Covering by Trees

> Proposed by Keutzer in program DAGON[DAC’87]

> Basic idea: dynamic programming.
> Procedure:

= Partition the subject graph into trees;
= Cover each tree optimally;
= Piece the tree-cover into a cover for the subject graph.

> Complexity: finding all sub-trees of the subject 
graph that are isomorphic to a pattern tree. It is  
linear in the size of subject tree and the size of 
the pattern trees.



Aug-23 ENEE 644 18

Partitioning Subject DAGs into Trees

> Tree circuit: a single output circuit in which each 
gate (except the output) feeds exactly one gate.

> Break the graph at all multiple-fanout points

> Example: 

Leads to 
3 trees



Aug-23 ENEE 644 19

Tree Covering by Dynamic Programming

> For each primary input, cost to cover is 0;
> For each (non-leaf) node v in the subject trees 

(the traverse follows a topological order)
= Recursive assumption: we know a best cost cover for 

each of its (transitive) predecessors.
= Recursive formula for cost to cover v:

• For each matched pattern graph, compute sum of 
the cost of this pattern and the total best costs of all 
fanins to this pattern graph.

• Take the minimum as the best cost for node v.
> Total cost is the sum of best costs for all primary 

outputs of the subject trees.



Aug-23 ENEE 644 20

Example: Base Functions & Pattern Trees

inv 1 nand3 3 oai21 3nor2 2nand2 2 

Base Functions:

Pattern Trees:



Aug-23 ENEE 644 21

nand3 3
nand2 15

=2+13
nand3 3

nand2 5
=2+3

nand2 15
=2+13

nand2 5
=2+3

Example: Subject Graph and Covering

inv 1

nand2 2 

nand2 2 

inv 1

inv 3=1+2

nor2 2 nand3 3 oai21 3

nand2 5
=2+(2+1)

nand2 8
=2+(5+1)

nand3 3
nand2 13
=2+(8+3)

inv 14=1+13 nand3 14
=3+(8+3)



Aug-23 ENEE 644 22

oai21 7
=3+(3+1)

Example: a Better Covering

inv 1

inv 1

nor2 2 nand3 3 oai21 3

nand2 5
=2+(2+1)

nand2 8
=2+(5+1)

nand3 3

nand3 14
=3+(8+3)

nand2 2

inv 3

nand3 13
=3+(7+3)



Aug-23 ENEE 644 23

Example: Role of Decomposition

> For a give logic function (including gates from the 
library), different decomposition to base functions 
create distinct subject function.

> Example: 
= Base Functions:
= Pattern Trees: same as before
= Circuit: 

one decomposition
and a cover of cost 5

another decomposition
and a cover of cost 4

nor2 2 nand3 3 oai21 3

nand3 3
nor2 2



Aug-23 ENEE 644 24

More on Technology Mapping

> Rule-based techniques
> DAG covering problem
> Tree covering approach
> Binate covering problem
> Boolean matching
> Decomposition + mapping
> Technology mapping for performance
> Gate resizing after technology mapping
> FPGA technology mapping



Aug-23 ENEE 644 25

Big Picture

Given a set of 
logic equations 
(not optimized):
= t1 = a + bc
= t2 = d + e
= t3 = ab + ch
= t4 = t1t2 + g
= t5 = t4h + t2t3
= F = t5’
17 literals

Technology 
independent 
optimization:
= t1 = d + e
= t2 = b + h
= t3 = at2 + ch
= t4 = t1t3 + gh
= F = t4’

13 literals

Technology 
dependent 
implementation:
Implement this 
network using a set 
of gates form a 
library, each gate 
has a cost (i.e. its 
area, delay, etc.) 
such that the total 
cost is minimized.


