Госуда вственное бюджетное профессиональное образовательное учреждение Ростовской области

«Зерноградский техникум агротехнологий» г. Зерноград

Кафедра инновационных материалов и защиты от коррозии

Основы материаловедения

2

Материаловедение — наука о связях между составом, строением и свойствами материалов и закономерностям их изменений при внешних физико-химических воздействиях.

Свойства технических материалов формируются в процессе их изготовления.

Пи одинаковом химическом составе, но разной технологии изготовления образуется разная структура, и вследствие — свойства.

Цель материаловедения — изучение закономерностей формирования структуры и свойств материалов методами их упрочнения для эффективного использования в технике.

Основная задача материаловедения — установить зависимость между составом, строением и свойствами, изучить термическую, химико-термическую обработку и другие способы упрочнения, сформировать знания о свойствах основных разновидностей материалов.

Материаловедение как научная дисциплина численно оперирует показателями свойств материала (временное сопротивление разрушению, прочность на сжатие, твёрдость и т.п.).

Показатели свойств, химический состав в материаловедении связываются с особенностями строения материала.

Различают:

- Макростроение (выявляется визуально);
- Микростроение (выявляется при увеличении, достигаемом оптическими системами);
- □ Субмикростроение (выявляется с помощью рентгеновских и электронных лучей).

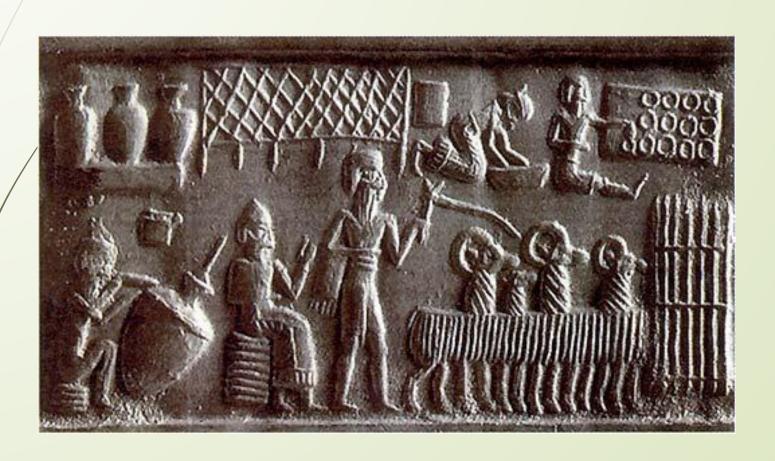
4

1. Менделеев Д.И. и его периодическая таблица элементов (1864 г.)

Групп а• ↓Перио 1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og
Лантаноиды				57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Актиноиды				89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

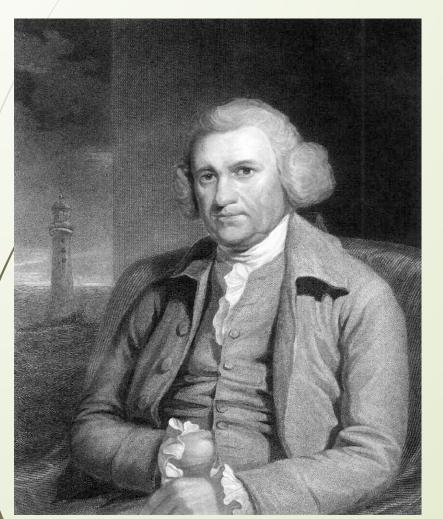
2. **Египтяне**, придумавшие плавить железо за 3500 лет до н.э., тем самым «подарившие нам секрет обработки главного на сегодня металлургического материала.

6


3. Джон Бардин, Уильям Шокли, Уолтер Браттейн — создание транзистора (1948 год — начало микроэлектроники и компьютерных технологий).

7

4. Жители Северо-Западного Ирана, изготовившие первое стекло — второй после керамики неметаллический материал цивилизованного мира (2200 лет до н.э.).


8

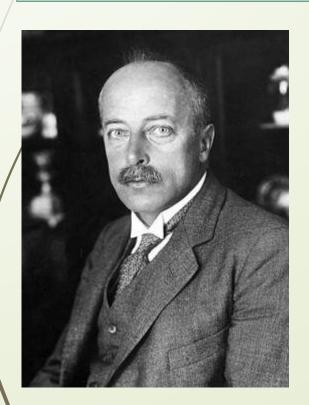
5. Антони ван Левенгук – разработка в конце XVII века оптического микроскопа с 200-кратным увеличением – начало исследования микроструктур

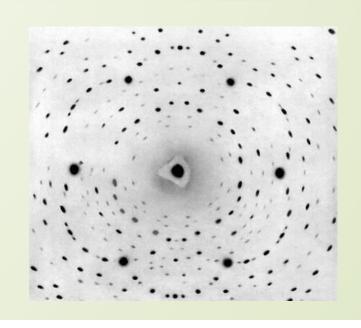
. **Джон Смитон** – изобретение в 1775 году бетона – главного строительного материала.

10

7. Индийские металлурги — за 300 лет до н.э. придумали способ плавления стали в вагранках (врытых в землю керамических сосудах). При этом была получена та самая сталь, которую спустя столетия назову «дамасской» и секрет получения которой останется загадкой для многих поколений кузнецов и металлургов.

11

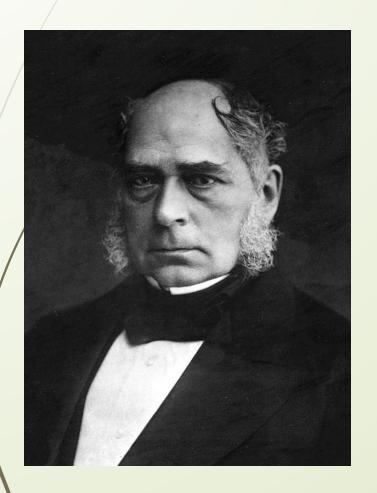

8. Малая Азия — за 5000 лет до н.э. было обнаружено, что из малахита можно добывать медь и, что расплавленный металл может приобретать самые разнообразные формы (начало металлургии и освоения минералов).

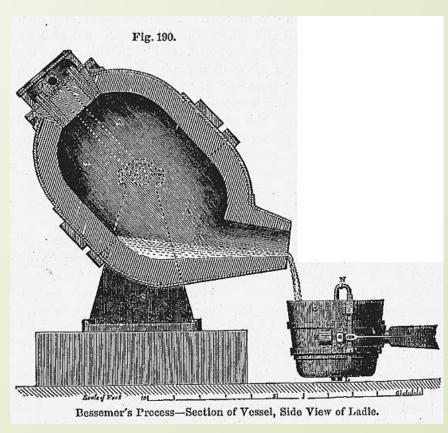


 $Cu_2CO_3(OH)_2$

12

9. Макс фон Лауэ -1912 год открытие дифракции рентгеновских лучей в кристаллах, что положило начало изучению кристаллических структур. Впоследствии Ю.В. Вульф и Уильям Генри Брэгг вывели основную формулу рентгеноструктурного анализа.





 $n * \lambda = 2d \sin \theta$

13

10. Генри Бессемер – 1856 год. Запатентовал кислородноконверторный способ производства низкоуглеродистой стали.

С этим рейтингом можно поспорить, потому что событий, не уступающих по своей значимости вышеупомянутым, конечно же значительно больше.

□ Д.К. Чернов (критические точки сталей);

14

- **П.С. Курнаков, С.Ф. Жемчужный** (исследование металлических систем);
- **А.А. Бочвар** (явление сверхпластичности);
- □ С.И. Губкин (закономерности пластической деформации металлов);
- В.Д. Садовский (природа структурной наследственности стали при её термической обработке);
- □ У. Гиббс (правило фаз и общие принципы равновесия термодинамических систем);
- Флоренс Осмонд (уточнил значение критических точек на диаграмме состояния «железо-цементит»;
- □ Луи-Жозеф Труст (структура троостита);
- □ Адольф Мартенс (структура Мартенсита);
- □ Г.К. Сорби (структура сорбита).