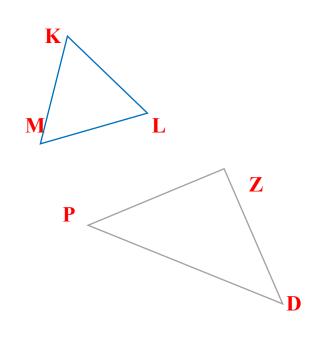
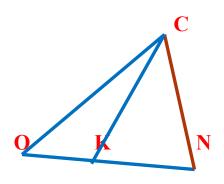
ОТНОШЕНИЕ ПЛОЩАДЕЙ ПОДОБНЫХ ТРЕУГОЛЬНИКОВ

геометрия – 8 класс

Ионашку Ирина Владимировна МКОУ Кайгородская ООШ

Дайте ответы на вопросы:



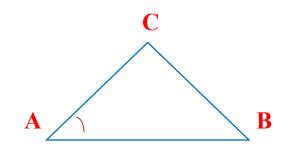


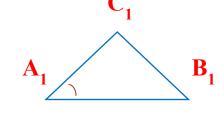
- **1.**Что называют отношением отрезков AB и CD?
- **2.**При каком условии отрезки AB, CD и A_1B_1 , C_1D_1 называют пропорциональными?
- 3.Назовите сходственные стороны треугольников Δ MKL и Δ PZD, если \angle M= \angle Z, \angle K= \angle D, \angle L= \angle P.
- **4.**Используя свойство биссектрисы треугольника, найдите KN, если ОС=4см, CN=3см, ОК=2см.

$$\frac{oK}{oc} = \frac{KN}{cN}, KN = \frac{oK \cdot cN}{oc}$$

$$\frac{KN}{3} = \frac{2}{4}; KN = \frac{2 \cdot 3}{4} = \frac{3}{2} = 1,5 \text{ (cm)}$$

Теорема: «Об отношении площадей подобных треугольников» Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.





Дано: △ABC ∾ △A₁B₁C₁

Доказать:
$$\frac{S_{ABC}}{S_{A_1B_1C_1}} = k^2$$

Доказательство:

1.Так как по условию △ABC ∾ △A₁B₁C₁, то

$$\angle A = \angle A_1$$
, значит $\frac{S_{ABC}}{S_{A_1B_1C_1}} = \frac{AC \cdot AB}{A_1C_1 \cdot A_1B_1}$

2. Так как

$$\frac{AC}{A_1C_1} = k; \frac{AB}{A_1B_1} = k,$$
то $\frac{S_{ABC}}{S_{A_1B_1C_1}} = k^2$

Закрепление.

№ 544

<u>Дано</u>: ΔABC ∞ $\Delta A_1B_1C_1$,

$$S_{ABC} = 75 \text{m}^2, S_{A_1B_1C_1} = 300 \text{m}^2, A_1C_1 = 9 \text{m}$$

Найти: АС

Решение:

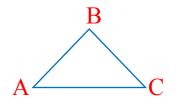
- 1. Так как по условию $S_{ABC} = 75 \text{м}^2$, $S_{A_1B_1C_1} = 300 \text{м}^2$ то по т. «Об отношении площадси подооных треугольников»:
- 2.Так как : ΔABC ∞ $\Delta A_1B_1C_1$, а также

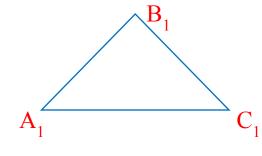
$$\frac{S_{A_1B_1C_1}}{S_{ABC}} = k^2$$
 т.е. $k^2 = \frac{300}{75} = 4$, значит $k = 2$

$$\frac{A_1C_1}{AC} = 2$$
, значит $AC = \frac{9}{2} = 4,5$ (м)

AC и A_1C_1 – сходственные стороны, k=2, то

Ответ: AC=4,5 (M)





Закрепление.

№ 545

<u>Дано</u>: $\triangle ABC$ $\otimes \triangle A_1B_1C_1$, $AC: A_1C_1$ =6:5

 $S_{ABC} > S_{A_1B_1C_1}$ на 77см 2

Решение:

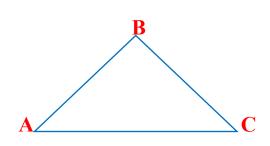
1.Пусть
$$S_{A1B1C1} = x c M^2$$
, $S_{ABC} = (x+77) c M^2$

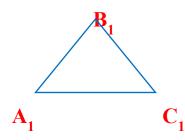
2.Так как AC:
$$A_1C_1 = 6:5$$
 , то $k = \frac{6}{5}$

$$\frac{S_{ABC}}{S_{A_1B_1C_1}} = k^2 \ m.e. \ \frac{x+77}{x} = \frac{36}{25}, omcioda \ x = 175$$

Значит
$$S_{A^1B^1C^1} = 175 cm^2$$
, $S_{ABC} = 252 cm^2$

Otbet:
$$S_{A^1B^1C^1} = 175 \ cm^2$$
, $S_{ABC} = 252 \ cm^2$





Закрепление.

№ 537

<u>Дано</u>: \triangle ABC, AD – биссектриса \triangle ABC, AB=14см,

AC=21cm, BC=20cm

Найти: BD, DC

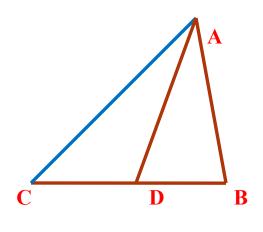
Решение:

1.Так как по условию BC=20см, BC=CD+DB, то пусть BD=xcm, CD=(20-x)cm.

3.Так как по условию AB=14cm, AC=21cm, то (1) – примет вид: $\frac{x}{14} = \frac{20-x}{21}$, отсюда x = 8

Значит BD=8*см*, DC=12*см*.

Ответ: BD=8см, DC=12см.



Домашнее задание:

Глава VII, § 1, п56-п58;

вопросы 1-4 (стр 160);

Nº 538 - «3»

Nº 538, № 547 - **«4»**

Nº 538, № 547, №548 - «5»

Самопроверка домашнего задания по образцу № 538



<u>Дано</u>: \triangle ABC, AD – биссектриса \triangle ABC, CD=4,5cM, BD=13,5cM, P_{ABC}=42cM.

Найти: АВ и АС

Решение:

1.Так как CB=CD+DB, CD=4,5см, BD=13,5см, то CB=18см.

2.Пусть AB = x. Так как P_{ABC} =42*см*, CB=18*см*, то AC = 42-(18+x) = 24-x (*см*).

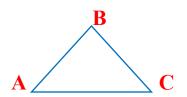
3.По свойству биссектрисы треугольника: $\frac{CD}{AC} = \frac{DB}{AB}$

т.е. $\frac{4,5}{24-x} = \frac{13,5}{x}$, отсюда x = 18.

Значит AB=18*см* и AC =6*см*.

Ответ: AB=18*см* и AC=6*см*.

Самопроверка домашнего задания по образцу № 547

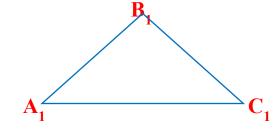


Доказать:
$$\frac{P_{ABC}}{P_{A_1B_1C_1}} = k$$

Доказательство:

1.Так как по условию $\Delta ABC \circ \Delta A_1B_1C_1$, то

$$AB = k \cdot A_1B_1$$
; $BC = k \cdot B_1C_1$; $AC = k \cdot A_1C_1$



$$2 \cdot \frac{P_{ABC}}{P_{A_1B_1C_1}} = \frac{AB + BC + AC}{A_1B_1 + B_1C_1 + A_1C_1} = \frac{k \cdot A_1B_1 \cdot k \cdot B_1C_1 \cdot k \cdot A_1C_1}{A_1B_1 + B_1C_1 + A_1C_1} = \frac{k \cdot (A_1B_1 + B_1C_1 + A_1C_1)}{A_1B_1 + B_1C_1 + A_1C_1} = k$$

ч.т.д.

Итак если $\triangle ABC \otimes \triangle A_1B_1C_1$, то

$$(1)\frac{S_{ABC}}{S_{A_1B_1C_1}} = k^2 \qquad \qquad (2)\frac{P_{ABC}}{P_{A_1B_1C_1}} = k^2$$

Самопроверка домашнего задания по образцу № 548

<u>Дано</u>: ΔABC $\otimes \Delta A_1B_1C_1$, BC и B_1C_1 – сходственные стороны, BC = 1,4M = 140CM, B_1C_1 = 56CM.

$$\frac{P_{ABC}}{P_{A_1B_1C_1}}$$

$$\frac{P_{\text{ешение}}}{P_{A_1B_1C_1}} = k$$
 и $\frac{BC}{B_1C_1} = k$, то $k = \frac{140}{56} = 2,5$

OTBET:
$$\frac{P_{ABC}}{P_{A_1B_1C_1}} = 2,5$$