

Ассортимент оборудования

Обсудим сегодня:

- 1. Линейка оборудования
- 2. **NEXT** Series

7.5/15KBm, 22/37KBm

- 3. Внешний вид оборудования и внутреннее строение
- 4. Целесообразность продаж
- 5. Спецификация

55/75κBm

- 6. Внешний вид оборудования и внутреннее строение
- 7. Целесообразность продаж
- 8. Спецификация

2000 Series

<u> 100кВт</u>

1. Линейка оборудования

Модельный ряд

				Выхо	дная м	ощнос	ть дви	гателя	(кВт)	_
С регул. производи тельности	Способ охлаждения	Встроенн ый возд. осущитель	7,5	11	15	22	37	55	75	100
		с осуш.	0	0	0	0	0	0	0	0
N.A.	воздушное	без осуш.	0	0	0	0	0	0	0	
М тип		без осуш.				0	0	0	0	0
	водяное	с осуш.				0	0	0	0	
		без осуш.			0	0	0	0	0	0
G	воздушное	с осуш.			0	0	0	0	0	
S тип		без осуш.				0	0	0	0	0
	водяное	с осуш.				0	0	0	0	
Vтип		без осуш.	0	0	0	♦	\Q	♦	♦	0
	воздушное	с осуш.	0	0	0	♦	\Q	♦	♦	
		без осуш.				♦	\Q	♦	♦	0
	водяное	с осуш.				♦	\Q	♦	♦	

Примечание:

- с фиксированной скоростью (индукционный двигатель)
- ∅ Индукционный двигатель + Инверторный привод
- ☐ Электродвигатель на постоянных магнитах (РМ двигатель) + контроллер

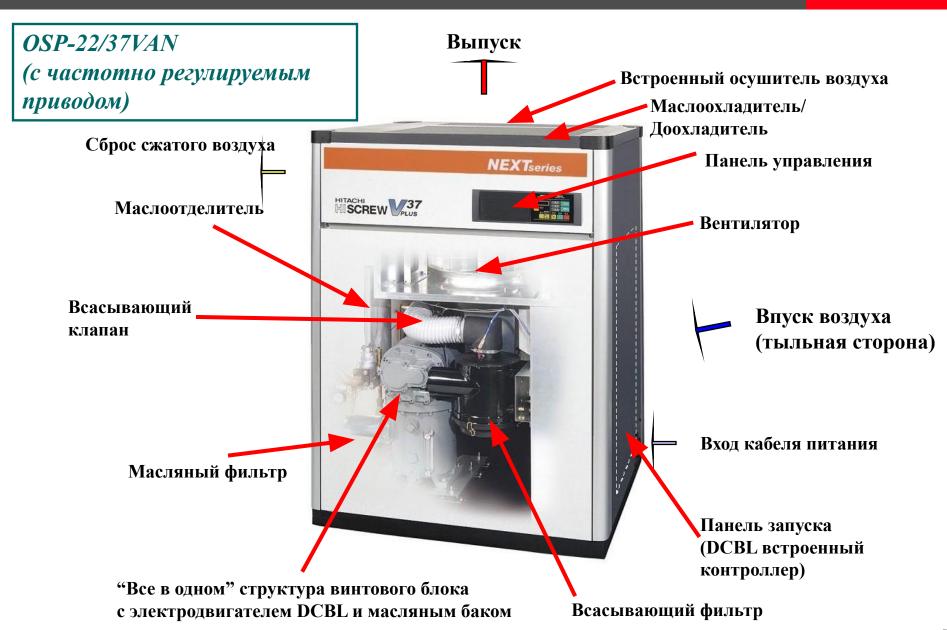
NEXT series

Методы контроля производительности

Тип модели	S	тип	M	V тип	
Мощность двигателя (кВт)	7.5/11/15	22/37, 55/75	7.5/11/15	22/37, 55/75	все модели
U тип (Модуляция)	Опция	Опция	Опция	Опция	
I тип (Модуляция + Разгрузка)	Стандарт. уст.	Опция	Опция	Опция	
I тип (Разгрузка)		Стандарт. уст.			
Р тип (Автозапуск двигателя/стоп + Разгрузка + Модуляция)			Стандарт. уст.		
Р тип (Автозапуск двигателя/стоп + Разгрузка)				Стандарт. уст.	
V тип (Частотно регулируемый привод + Разгрузка + Автозапуск двигателя/стоп)					Стандарт. уст.

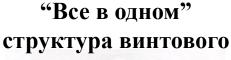
2. Характерные особенности

NEXT series


7.5/11/15 kBm, 22/37 kBm

NEXT series

OSP-11 / 15SAN, MAN, VAN



Энергосбережение

Снижение сброса давления в фильтрах

Снижение потери энергии осущителя (*2)

Первое в

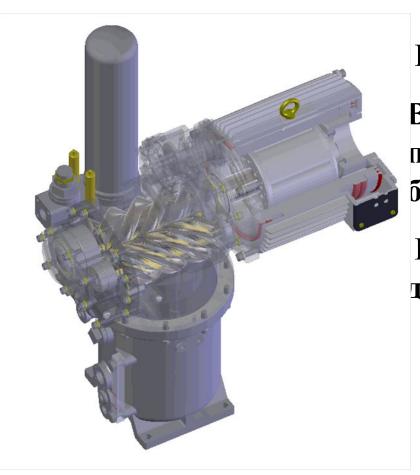
мире Высокоэффективное

(*1)

каскадное векторное управление

Примечание:

*1: для 22/37VAN


*2: для модели со встроенным осушителем

Энергосбережение

«ВСЕ В ОДНОМ» Структура винтового блока^(*1)

Новый ECOPROFILE

Высокая эффективность благодаря прямому соединению винтового блока к электродвигателю DCBL (*2).

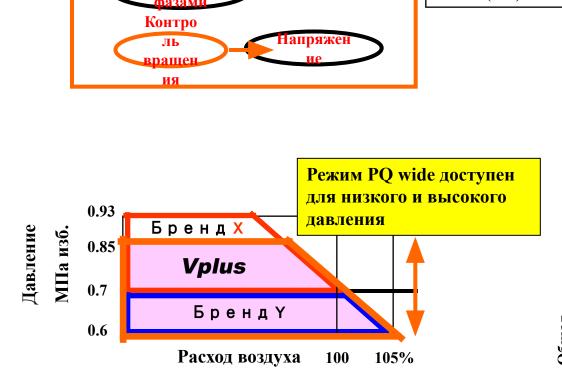
Потеря энергии при падении давления минимизирована.

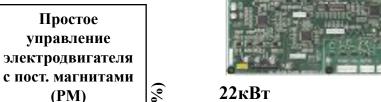
*1: для 22/37VAN

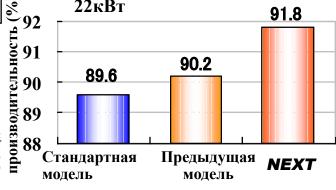
*2: электродвигатель на постоянных

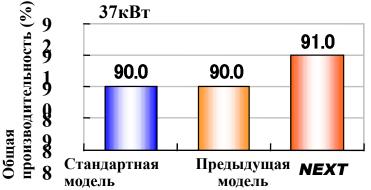
магнитах

<Запатентовано ЈР 3255213>


Каскадное векторное управление


Первая в мире


(*)

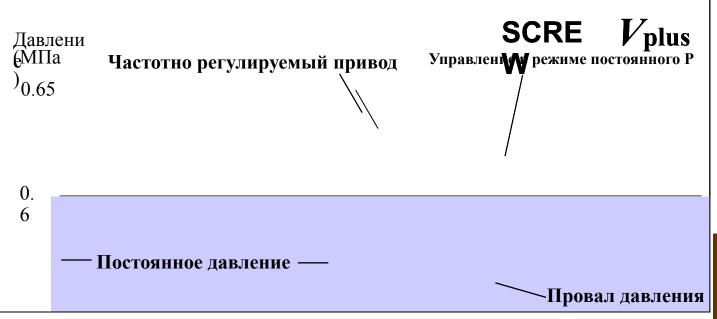

Каскадно-векторная система управления (*)

* для 22/37VAN

Энергосбережение

Высокоэффективный вентилятор охлаждения

- Центробежный вентилятор охлаждения захватывает большой объем воздуха и при этом работает экономично.
- Благодаря инвертору снижается потребление электроэнергии. (*)



Система управления

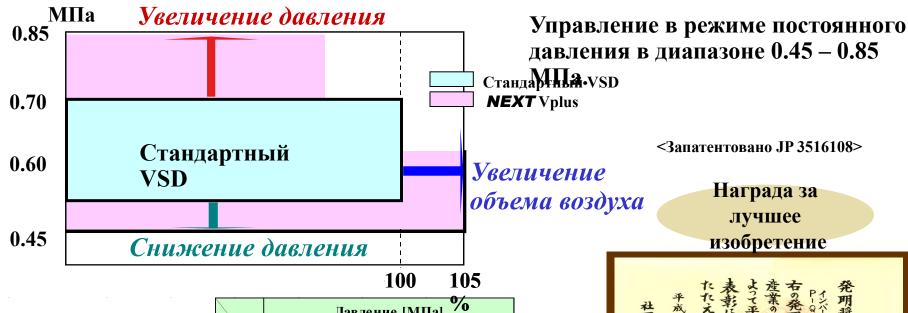
* Подходит для Vplus

Управление в режиме постоянного давления (*)

<Запатентовано ЈР3262011>

Награда за лучшее изобретение

- Благодаря исключительной системе управления Hitachi НЕТ отклонений от заданных значений даже при работе на холостом ходу или при автозапуске/остановке.
- Снижение давления управления в целях уменьшения потребления энергии.



Система управления

Pежим PQ WIDE (*)

* Для Vplus

- Авторегулировка максимальной скорости вращения.
- Более широкий диапазон давления (Р), объем воздуха (Q)

Производительность в режиме PO wide (м³/мин)

	Давление [МПа] %										
	0,45	0,5	0,6	0,7	0,85	0,9					
11кВт	-	1,75	1,75	1,75	1,6	1,5					
15кВт	-	2,35	2,35	2,35	2,1	2,0					
22кВт	4,2	4,2	4,2	4,0	3,5	-					
37кВт	7,1	7,1	7,1	6,8	6,2	ì					
55кВт	10,5	10,5	10,5	10,0	9,0	ī					
75кВт	13,9	13,9	13,9	13,2	11,9	-					

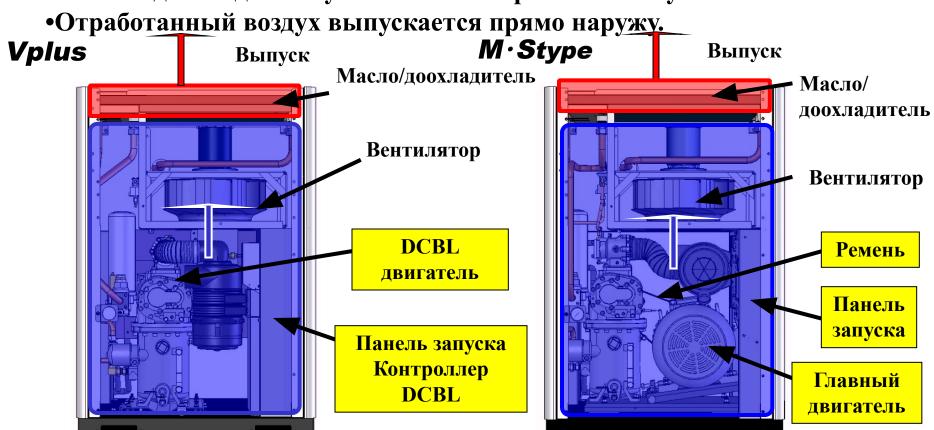
状

Система управления

Контроллер с ЖК-дисплеем

Усовершенствованная система настроек.

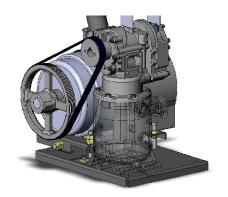
Установка различных настроек/отслеживание на мониторе.



Надежность и долговечность

Сохранение пониженной внутренней температуры установки

• Масло/ доохладитель установлен в верхней части установки.



Надежность и долговечность

Натяжение ремня

22/37SAN и МАN

11/15 SAN, MAN u VAN

Картриджный фильтр

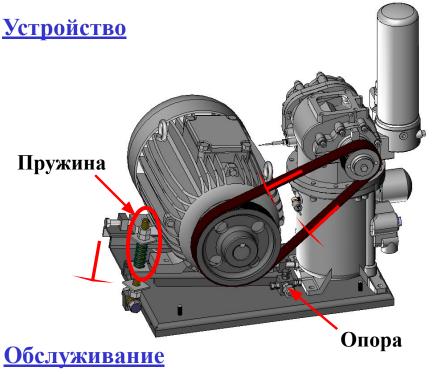
- Легкосъемный фильтр.
- Простой доступ путем открытия передней панели.

Масло HISCREW 2000

- Высокая степень защиты от окисления.
- Срок службы (2 года).

Цикл капитального ремонта: 8 лет

• Долгий срок службы благодаря высокопрочным подшипникам.



Надежность и долговечность

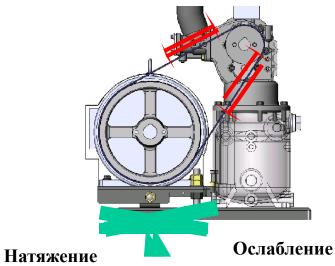
* для 22/37SAN и MAN

Автоматическое натяжение ремня (*)

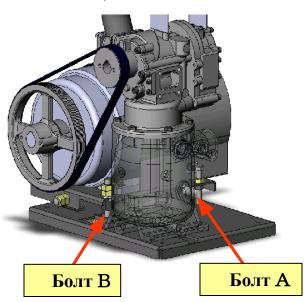
Скольжение ремня исключено

→ уменьшение износа ремня

- Цикл проверки натяжения ремня: 6,000ч или 1 год
- Цикл замены ремня: 12,000ч или 2 года
- Проверка: шарнирный болт и пружина


Надежность и долговечность

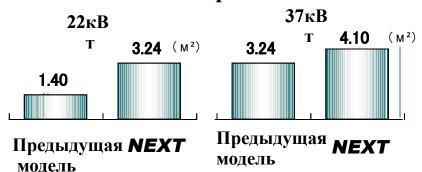
* для моделей 11/15 кВт


Простая регулировка натяжения ремня (*)

Механизм регулировки

С помощью 2-х болтов

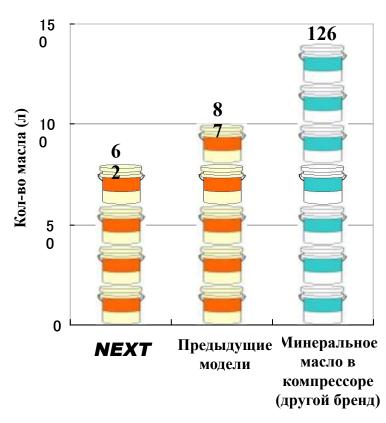
Предыдущим моделям для натяжения ремня требовалось 8 регулировочных болтов. В новой модели используются 2 болта для упрощения обслуживания.


Надежность и долговечность

Фильтр на входе

- Легкосъемный (картриджный тип)
- Большой размер фильтра длительный интервал чистки. (Замена через 1 год или 6,000 ч)

Фильтрация


Маслоотделитель

- Легкосъемный (патронный тип)
- Из нержавеющей стали, антикоррозийное покрытие.

Расход масла

Уменьшение объема потребляемого масла. (*)

Например, 22кВт модель: через 48,000ч (6,000ч/лет ×8 лет)

5. Спецификация

Модель 22/37 кВт с частотно-регулируемым приводом

To a second seco					I J	10					
				HISCRE	W NEXT		HISCREW 2000				
			OSP-22VA(R)N OSP-37VA(R)N		OSP-22V5A(R) II		OSP-37V5A(R) II				
Ном. мощность	двигателя	кВт	22 37		22		3	37			
Давление на вы	ходе	Мпа		0,	70		0,69				
Производителы	ность	м ³ /мин	4	,0	6	,6	3,8		6	6,3	
Режим PQ wide	Давление на выходе	МПа	0,6	0,85	0,6	0,85	0,59	0,83	0,59	0,83	
	Производитель ность	м ³ /мин	4,2	3,5	6,9	6,0	4,1	3,1	6,7	5,5	
Главный двигат	ель	1	[вигатель]	DCBL (на п	остоянных	мангнитах	3-фазн	ый индукц	ионный дві	игатель	
Привод		I	Прямой привод				V-ре ме нь				
Габариты (Ш ×	$(L \times B)$	ММ	1,000×1,000×1,500 1,200×1,100×1,650			100×1,650	1,200 ×890 ×1,260		1,400 ×970 ×1,400		
Примерный вес		кг	460((520)	630((700)	570(620)		820(890)		

Модель 22/37кВт с фиксированной скоростью

		OSP-22S/M5A(R)N	OSP-37S/M5A(R)N	OSP-22S/M5A(R)I	OSP-37S/M5A(R)I	
Ном. мощность двигателя	кВт	22 37		22	37	
Давление на выходе	Мпа	0.7 / 0.	85 / 1.0	0.69 / 0.83 / 0.92		
Производительность	м ³ /мин	3.9 / 3.4 / 3.1	6.5 / 5.8 / 5.2	3.8 / 3.1 / 2.9	6.3 / 5.5 / 5.0	
Главный двигатель	·	3-фазный индукци	онный двигатель	+		
Привод	-	V-ремень (с ав	гонатяжением)	V-ремень		
Габариты (Ш ×Г ×В)	ММ	1,000×1,000×1,500	1,200×1,100×1,650	1,200×890×1,260		
Примерный вес	кг	590(650)	830(900)	570(620)	820(890)	

Модель 11/15кВт с частотно-регулируемым приводом

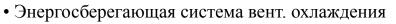
				1	10					
		HISCREW NEXT				HISCREW 2000				
	OSP-11	OSP-11VA(R)N OSP-15VA		VA(R)N	OSP-11VA(R)Ⅲ		OSP-15VA(R)Ⅲ			
Ном. мощность двигател	кВт	11		15		11		15		
Давление на выходе	Мпа		0,	83			0,	83		
Производителньость	м ³ /ми н	1	,6	2	,1	← ←			←	
Режим PQ wide Выхоле	на МПа	0,7	0,9	0,7	0,9	0,69	0,88	0,69	0,88	
Производ ельность	ит _{м³/мин}	1,75	1,5	2,35	2,0	1,75	1,5	2,4	2,0	
Главный двигатель	_	3-фазный индукционный двигатель			←					
Привод	V-ремень				←					
Габариты (Ш \times Γ \times B)	930×770×1,250			930×770×1,200						
Примерный вес кг		345(370) 360(390)		335(365) 350(386		(380)				

Модель 11/15кВт с фиксированной скоростью

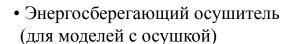
		HISCRE	W NEXT	HISCREW 2000			
		OSP-11MA(R)N OSP-15S/MA(R)N		OSP-11VA(R)Ⅲ	OSP-15VA(R)Ⅲ		
Ном. мощность двигателя	кВт	11	15	11	15		
Давление на выходе	Мпа	0.7	0.7 / 0.83				
Производительность	м ³ /мин	1.75 / 1.6	2.35 / 2.1	←	←		
Главный двигатель	_	3-фазный индукц	ионный двигатель	+			
Привод	_	V-pe	емень ←				
Габариты (Ш $ imes$ Г $ imes$ В)	ММ	930×77	0×1,250	0×1,200			
Примерный вес	КГ	340(365)	350(375)	335(365) 350(380)			

55/75 κBm

NEXT series



Применение передовой технологии

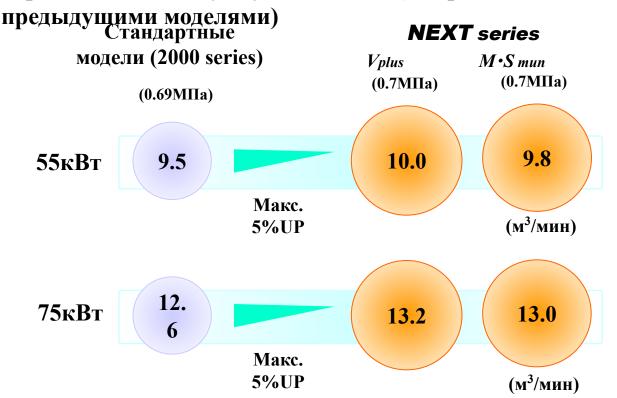

• Высокая эффективность винтового блока (New Rotor Profile) + привод DCBL

• Энергосберегающий клапан регулятора на входе

• Уменьшение низкого давления внутри

Пример (касательно энергосбережения)

- Режим PQ Wide (JP 3516108 и др.)
- Пост. управление рабочего давления (ЈР 3262011 и др.)
- Комбинированная система V и М типа (JP 3547314 и др.)



Высокоэффективный винтовой блок с низким уровнем шума

Новый профиль ротора.

Снижение механических потерь (подшипники, привод).

Производство воздуха увеличилось (по сравнению с

Новый винтовой блок

Новый профиль

Низкий уровень шума

- Новый винтовой блок уменьшает шум при загрузке/разгрузке.
- Новый турбо вентилятор + система упр. инверторного привода уменьшает шум при выпуске отработанного воздуха.
- Улучшенная система виброизоляции благодаря высокоэффективным резиновым прокладкам.

Низкий уровень шума при вращении. Уменьшение шума при загрузке/разгрузке.

Уровень шума значительно уменьшается в условиях низкой температуры внешней среды и пониженной нагрузки.

Резиновые прокладки находятся между частью винтового блока и самой основой для виброизоляции блока.

Безременный привод

- Прямое соединение (с переменной скоростью) или шестеренное (с фиксированной скоростью) уменьшает частую замену ремня и регулировку натяжения.
- Фланцевое соединение также уменьшает регулировку.

Фильтр картриджного типа

- Легкая замена
- Простой доступ

Новое масло HISCREW 2000

- Высокая степень защиты от окисления.
- Срок службы: 2 года (*)

Цикл капитального ремонта: 8 лет (*)

• Высокопрочные подшипники благодаря особому дизайну.

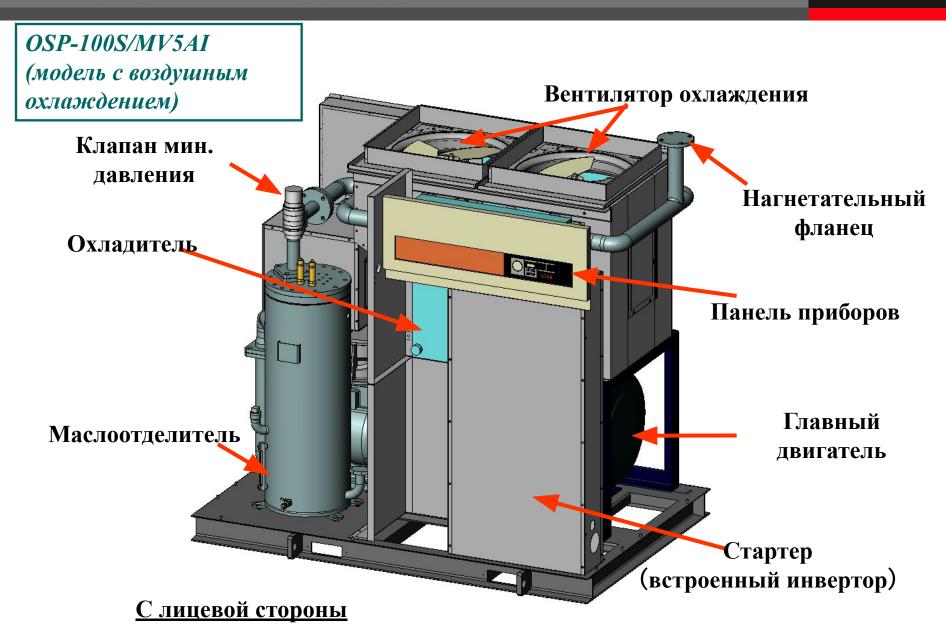
8. Спецификация

Модель 55/75кВт с частотно-регулируемым приводом

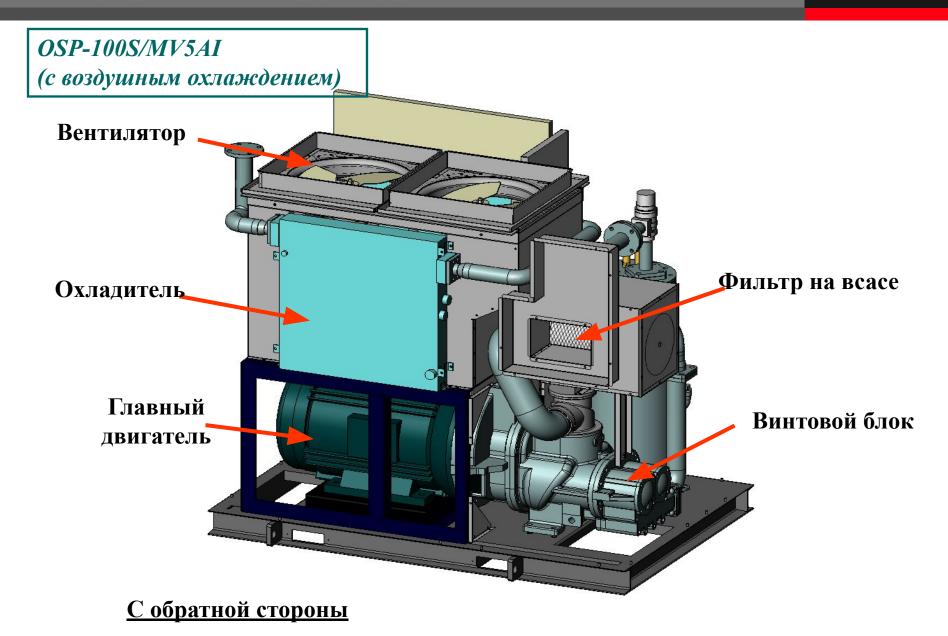
		HISCREW NEXT				HISCREW 2000				
	OSP-55VA(R)N		OSP-75VA(R)N		OSP-55VA(R)I		OSP-75VA(R)I			
Ном. мощность двигателя	кВт	5	55	75		55		75		
Давление на выходе	Мпа		0	.7		0,69				
Производительность	м ³ /мин	10	10,0 13,2			9,5		12,6		
Режим PQ wide Давление на выходе	МПа	0,6	0,85	0,6	0,85	0,59	0,83	0,59	0,83	
Производитель ность	м ³ /мин	10,5	9,0	13,9	11,9	10,0	8,5	13,4	10,8	
Главный двигатель	_	Двигателн	ь DCBL (на п	остоянных і	магнитах)	3-фазный индукционный двигатель				
Привод	_	С соединением валов				V-ременный привод Шесте		Шестерені	Пестеренный привод	
Габариты (Ш $\times \Gamma \times B$)	ММ	2,000×1,200×1,800			1,850×1,100×1,450 1,		1,850×1,1	1,850×1,150×1,470		
Примерный вес	кг	1,220	(1,340)	1,390(1,540)		1,070(1,190)		1,500(1,670)		

Модель 55/75кВт с фиксированной скоростью

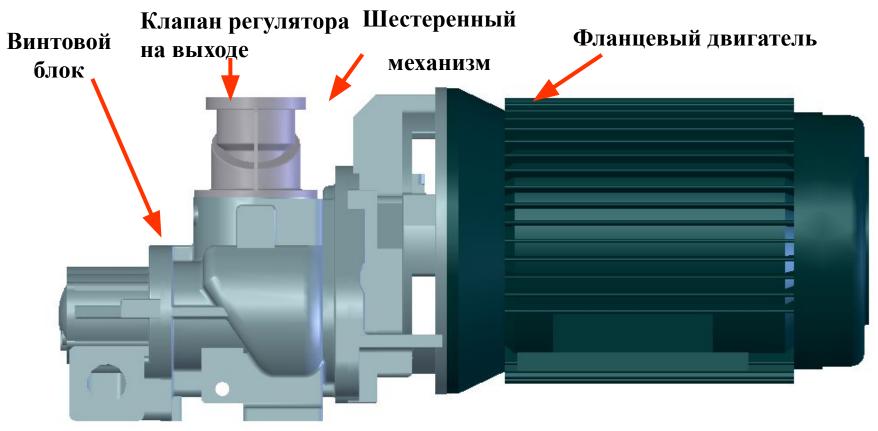
		HISCRE	W NEXT	HISCREW 2000		
		OSP-55S/MA(R)N	OSP-758/MA(R)N	OSP-55S/MA(R)I	OSP-75S/MA(R)I	
Ном. мощность двигателя	кВт	55	75	55	75	
Давление на выходе	Мпа	0.7 /	0.85	0.69 / 0.83		
Производительность	м ³ /мин	9.8 / 8.8	13.0 / 11.7	9.5 / 8.5	12.6 / 10.8	
Главный двигатель	<u></u> -	3-фазный индукц	ионный двигатель	*		
Привод	_	Шестерен	ный привод	V-ременный привод	Шестернный привод	
Габариты (Ш ×Г ×В)	мм	2,000×1,2	200×1,800	1,850×1,100×1,450	1,850×1,150×1,470	
Примерный вес	кг	1,390(1,510)	1,680(1,830)	1,020(1,140)	1,420(1,590)	



100 кВт


1. Внутренняя структура

1. Внутренняя структура



2. Винтовой блок и приводная система

100кВт винтовой блок + Двигатель

Уменьшение расхода масла: (кольцевое уплотнение)

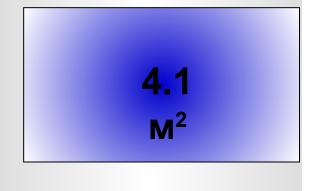
Фланцевый двигатель: нет соединение, регулировка не требуется

3. Целесообразность продаж ~ Компактность

На 32% меньше занимаемой площади

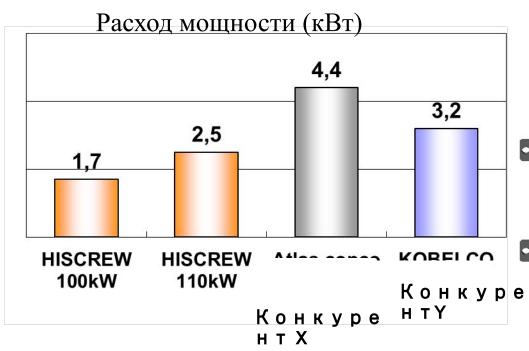
HISCREW 2000

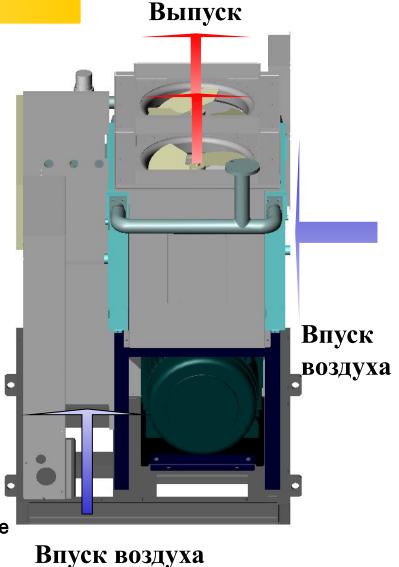
2.8 M²


Бренд 1 110

Бренд 2 110

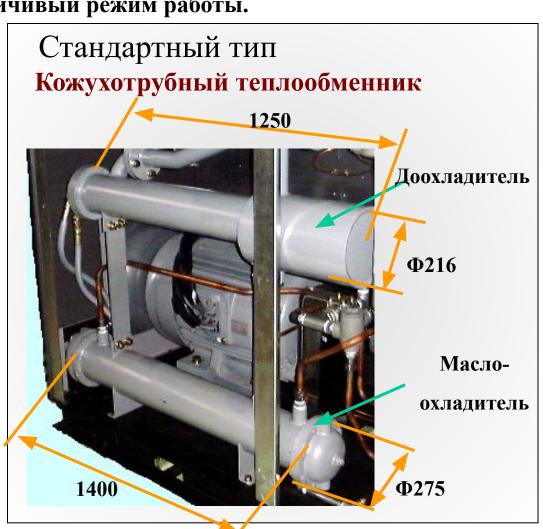
3. Целесообразность продаж ~ Эффективная система охлаждения


Двойная система охлаждения <mark>Вентили</mark>руемый воздух Благодаря данной системе охлаждения обогреваются оба охладителя и весь корпус. Впуск воздуха Охладитель спереди Охладитель с обратной стороны Стартер Впуск воздуха


3. Целесообразность продаж ~ Эффективная система охлаждения

Двойная система охлаждения

Низкая потребляемая мощность вентилятора.


3. Целесообразность продаж ~ Эффективная система охлаждения

Пластинчатый теплообменник (с водяным охлаждением)

Высокоэффективный и компактный из нержавеющей стали пластинчатый теплообменник обеспечивает устойчивый режим работы.

3. Целесообразность продаж ~ Эффективная система охлаждения

Строение пластинчатого теплообменника

Особенности

- •Легкость, компактность
- •Высокая степень защиты от коррозии и окалины
- •Высокое качество теплообменника

(спиральные канальные пластины)

100кВт Инвертор V-plus

- Вариации V-типного расположения.
- Технология с частотно-регулируемым приводом.

	7,5	11	15	22	30	37	55	75	90	100	150
HISCREW											Двойная
Atlas copco											
KOBELCO										Двойная	Двойная

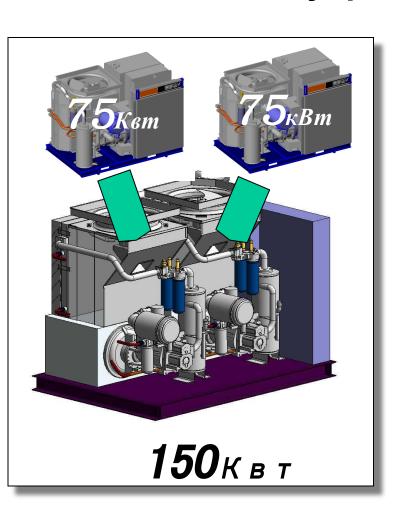
100/110кВт Инвертор V-plus

Вариации V-типного расположения.

Технология с частотно-регулируемым приводом.

	7,5	11	15	22	30	37	55	75	90	100	110	150
Hitachi												Двойная
Бренд Х												132
Бренд Ү											Двойная	Двойная

5. OSP "2000 series" 150кВт



150кВт: Утип, Мтип

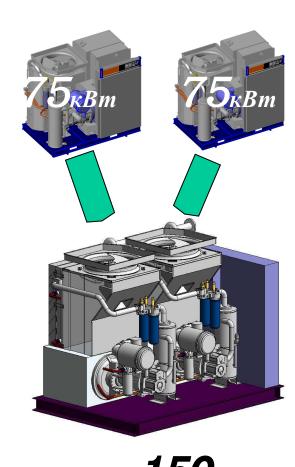
150кВт с воздушным охлаждением

Двойная система управл<u>ения</u>

Двойная система управления:

HISCREW2000 75kBT

Компрессор Модуль Х 2


+ двойная система управления

в одном корпусе

= 150κBτ HISCREW 2000

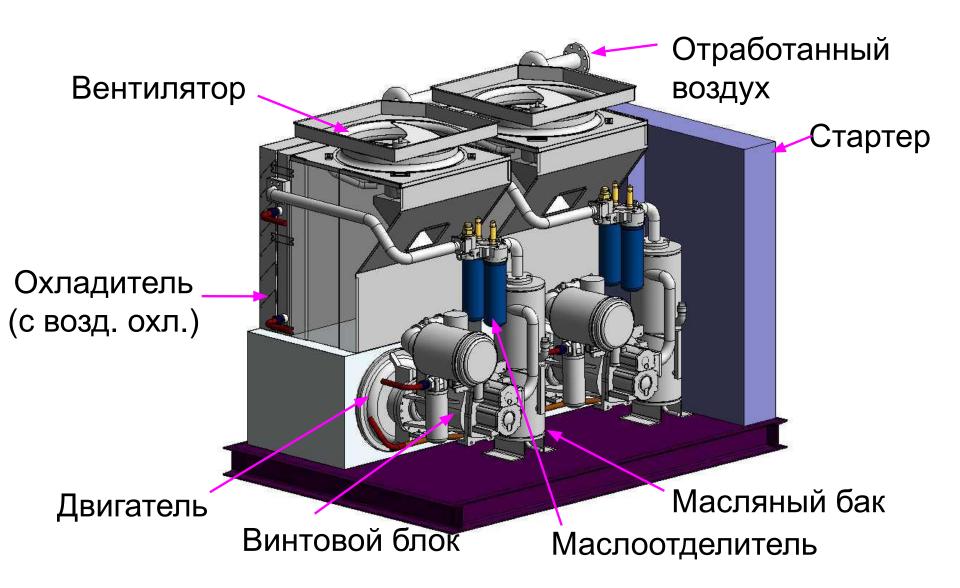
Особенности

150к В т

- Энергосбережение, Двойная система управления
- С воздушным охлаждением, компактный корпус
- Низкий пусковой ток (с задержкой)
- Многофункциональный ЖК-дисплей
- Одноступенчатая конструкция
- Одномодульный рабочий режим (в экстренном случае)
- Энергосберегающий инвертор V типа

Внешний вид: V типа с воздушным охлаждением

Ш=2,450


Γ=1,700

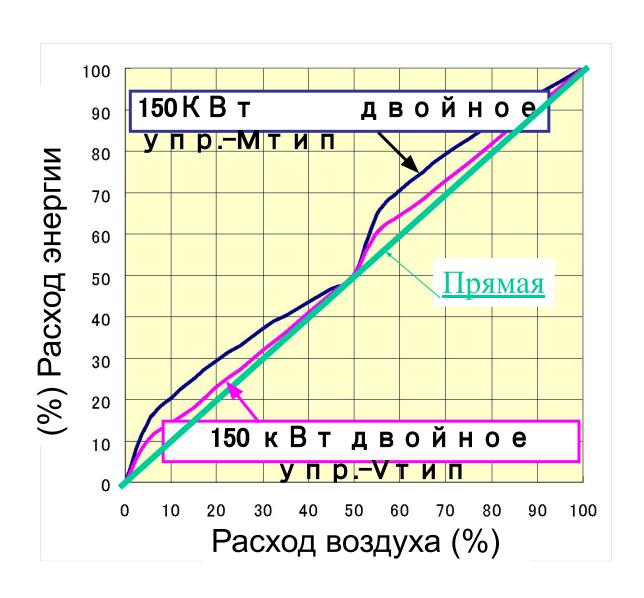
B=1,900

Вес:3200кг

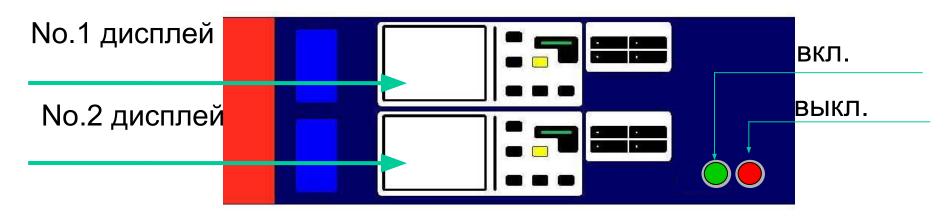
Двойная конструкция

Спецификации

	Модель	150 кВ⊤			
Наименование		Мтип	V тип		
Давление на выходе	МПа	0.75	[0.85]		
Производительность (*1)	м ³ /мин	26.0	[24.1]		
Мощность двигателя	кВт	150(7	75×2)		
Регулирование произв-ти		ММ-двойная	V М Комбинир.		
Электропитание		400B			
Стортор	<u>-</u>	* - \D	* - Δ		
Стартер		- 77	+ инвертор		
Лубрикант (смазка)	-	Новое масло Н	HISCREW 2000		
Расход масла	м <i>л</i> /м ³	0,005			
Метод охлаждения	==	Воздушное охлаждение			
Необх. объем возд. ресивера		4 М ³ (минимум)			
Уровень шума (*2)	дЕ(А)	75			

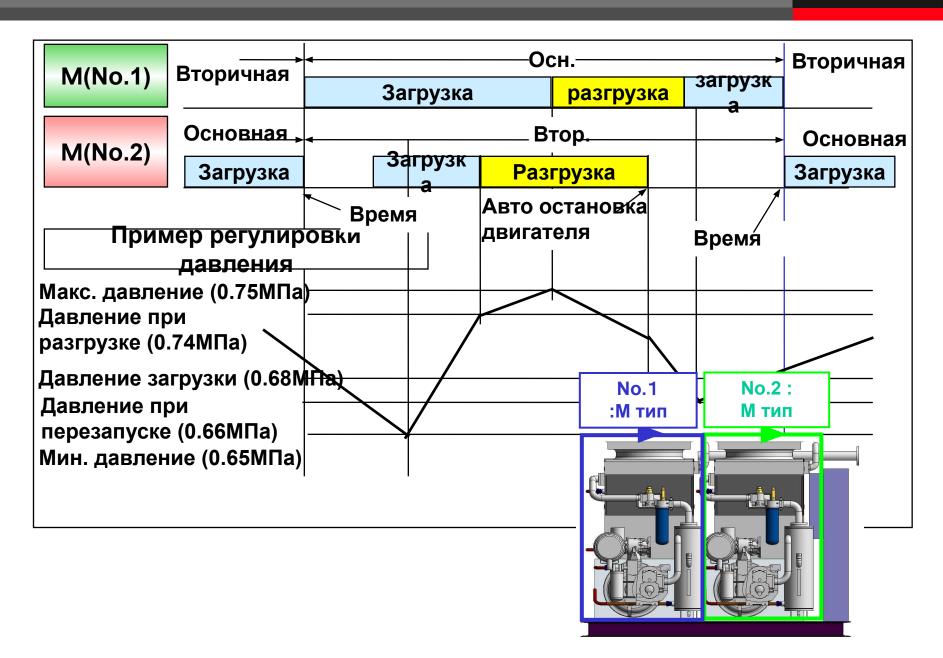

^{*1)} Мощность установки и соответствующее давление.

Модель 0.75МПа: 0.7МПа Модель 0.85МПа: 0.8МПа

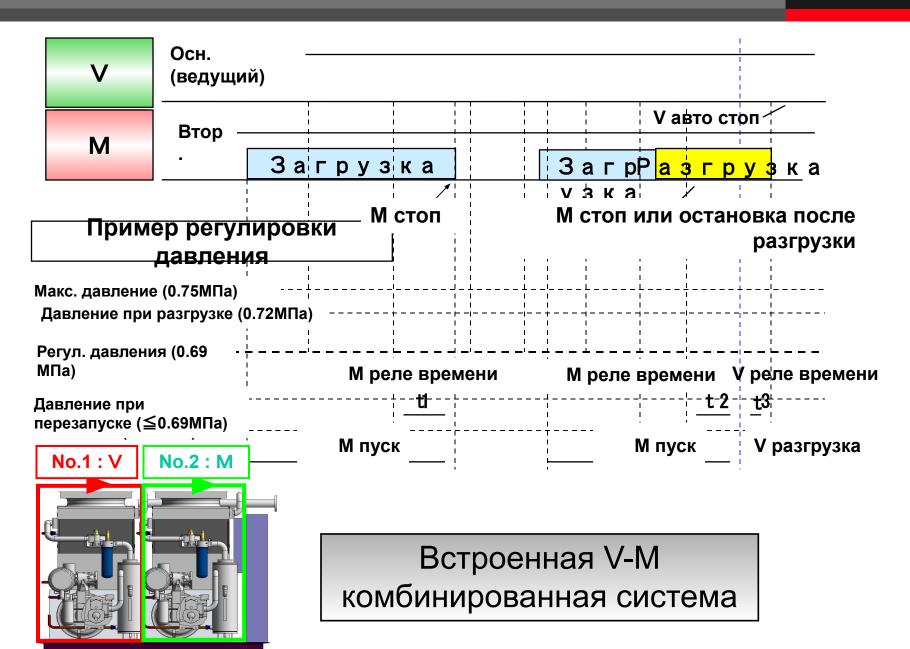

^{*2)} Уровень шума на расстоянии 1.5м и 1м в высоту в безэховом помещении.

^{*3)} Необходимый объем ресивера более 4м³.

Энергосбережение при двойном управлени Изріте the Next



Давление, температура на выходе, ток, норма, время срабатывания


Дисплей 1		Дисплей 2		Дисплей 3	
M1 TYPE:INTE*-TU SNGL-MANU-S DIS. PRESS:	15222	M2 TYPE:INTE*-TU SNGL-MANU-S DIS. PRESS:	10:10* SAVE 0.69MPa	M3 TYPE:INTE*-TU SNGL-MANU-S DIS.PRESS: 0.	
RUN HR: LOAD HR: LOAD NOS.:	580h* 410h 61	DIS. TEMP. 1: DIS. TEMP. 2: CURRENT:	90℃ 90℃ 150A	DATE: 2004/ HR. TO MAINT NEXT MAINT 0.	3 4 2 0 h
				LOAD RATE LOAD TIME UNLOAD TIME	50% 40s 40s

Двойное управление, Режим работы М типната не Next

Двойное управление, Режим работы V тип

Двойное управление, Стартер V тип

Встроенная V-М комбинированная система

V : Стартер (включая 75кВт инвертор)

При использовании данной V-M системы 75кВт заменяет 150кВт. При этом стоимость инвестиций меньше.

М: Стартер

Расшифровка по давлению

М тип

Давление	Пояснение	Погрешность
Макс.	Осн.: І-загрузка	0,75
Разгрузка	Втор.: І-разгрузка	Лимит-0.01
Загрузка	Осн.: загрузка (2 уст. разгрузка)	Перезапуск+0.02
Перезапуск	Осн.: загрузка (1 уст. в действии) Втор.: загрузка (2 уст. В действии)	0,66
Мин.	Втор.: перезапуск	Перезапуск-0.01
1/		

<u>V тип</u>

Давление	Пояснение	Погрешность
Макс.	V: I-разгрузка (только V в действии) м: I-разгрузка	0,75
Разгрузка	∨: І-разгрузка	Лимит-0.03
Управление	V: плавное регулирование скорости	0,69
Перезапуск	V: перезапуск после авто остановки	≦ 0.69
Мин.	М: перезапуск после авто остановки	0,65

P19 9,240 амер. \$/год

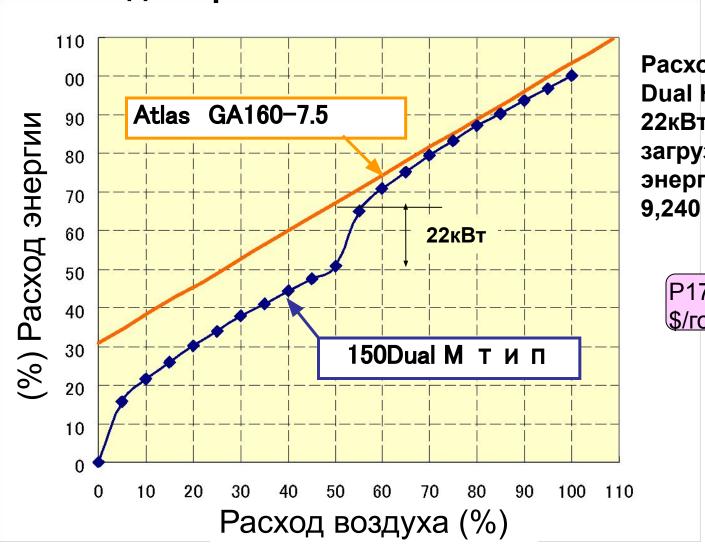
Конкурентные преимущества

Сравнение с Atlas Copco GA160-7.5

Энергосбережение при разгрузке

22кВт расход энергии при 50% загрузке

= 9,000 амер. \$ /год издержки электроэнергии


- Большой двойной дисплей сообщений
- Компактность
 занимает на 20% меньше площади
- Низкий пусковой ток
 время задержки запуска ведет к низкому пусковому току
- Простота в обслуживании
 75кВт двойная конструкция проста в обслуживании
- Одномодульный режим работы
 В случае прекращения работы одного модуля,
 второй работает независимо от первого.

Производитель	Hitachi	Atlas Copco	
Модель	OSP-150MAM	GA160-7.5	
Структура	Винтовой Dual	Винтовой	
Мощность двигателя	кВт	150	160
Давление при разгрузке	Мпа	0.75/0.85	0,74
Производительность (при 0.69МПа)	м3/мин	26	28,3
Напряжение/частота	В/Гц	400В класс 50/60	←
Привод	-	Шестереночный	Шестерночный + с соединением валов
Система запуска двигателя	-	star-delta	←
Производительность	-	M-M Dual	Вкл-выкл
Лубрикант		Synthetic 66L	Минеральное 125л
Расход масла	СМ ^{3/м 3}	0,005	0,005
Мощность вентилятора охлаждения	кВт	1.1 X 2	7(прогноз.)
Габариты (ШХГХВ)	ММ	2450X1700X1900	2779X1886X1990
Вес	КГ	3200	3025

Конкурентные преимущества

Расход энергии 150кВт Dual HITACHI меньше 22кВт при 50% загрузке, при этом энергосбережение = 9,240 амер. \$/год

Р17 9,000 амер. \$/год