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A Simplified Diagram of a Processor with 5 Stages
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Pipelines

For more efficiency, we can pipeline the design. This will eliminate 
idleness in the processor. 

In-order Pipelines
Instructions enter the pipeline in program order
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Pipelined Version of the Processor
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Problems with In-order Pipelines

Hazards
• Structural Hazards 🡪 Two instructions vie for the same resource

                     (NOT possible in simple 5-stage pipelines)
• Data Hazards 🡪 An instruction stands to read or write the wrong data.
• Control Hazards 🡪 Instructions are fetched from the wrong path of the    

branch
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Pipeline Diagrams 
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Pipeline Interlocks 
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Forwarding from the MA to the EX stage 🡪 No stalls
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Forwarding Multiplexers
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We need 4 Forwarding Paths
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Forwarding Paths Example

RW 🡪 MA ld r1, 8[r2]
st r1, 8[r3]

RW 🡪 EX ld r1, 8[r2]
sub r5, r6, r7
add r3, r2, r1

RW 🡪 OF ld r1, 8[r2]
sub r5, r6, r7
sub r8, r9, r10
add r3, r2, r1

MA 🡪 EX add r1, r2, r3
sub r5, r1, r4

Forward as late as possible
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Final View of the Pipelined Processor with 
Forwarding Multiplexers
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Data Hazards in In-order Pipelines with Forwarding

ld r4, 4[r0] add r5, r4, 1

Need the 
value in r4 

now

Earliest it 
can be 

generated

clock

Load-use 
Hazard
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Access
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Solution: Stall the Pipeline

ld r4, 4[r0] add r5, r4, 1

Cycle NCycle N+1

Need the 
value of r4 

now
Here is the 

data

clock

ld r4, 4[r0] 

Cycle N+2
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Control Hazards

beq .labeladd r1, r2, r3 beq .labelsub r5, r6, r7

We know the status of 
the branch now. 

Assume it is taken.

Cancel these 
instructions

Two instruction slots are wasted

Advanced Computer Architecture. Smruti R. Sarangi
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Performance Equation - I

Is Computer A faster that Computer B
• Wrong Answers: 

• More is the clock speed, faster is the computer
• More is the RAM, faster is the computer

What does it mean for computer A to be faster than computer B
Short Answer: NOTHING

Performance is always with respect to a program. You can say 
that a certain program runs faster on computer A as compared 
to computer B. 
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Performance Equation - II

• IPC is the number of instructions per cycle

• Let us loosely refer to the reciprocal of the time per program as 
the performance
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So, what does performance depend on …

#instructions in the program
• Depends on the compiler

Frequency 
• Depends on the transistor technology and the 

architecture
• If we have more pipeline stages, then the time to

traverse each stage reduces roughly proportionally
• Given that each stage needs to be processed in 

one clock cycle, smaller the stage, higher the frequency
• To increase the frequency, we simply need to increase the 

number of pipeline stages

IPC
• Depends on the architecture and the compiler
• A large part of this book is devoted to this aspect.
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How to improve performance? 

There are 3 factors: 
• IPC, #instructions, and frequency
• #instructions is dependent on the compiler 🡪 not on the architecture

       Let us look at IPC and frequency

IPC
• What is the IPC of an in-order pipeline? 

1 if there are no stalls, otherwise < 1

Advanced Computer Architecture. Smruti R. Sarangi

Forwarding

Having more not-taken branches in the code

Faster instruction and data memories

Methods to 
increase IPC

21
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What about frequency? 

What is frequency dependent on …
              Frequency = 1 / clock period
Clock Period: 
• 1 pipeline stage is expected to take 1 clock cycle
• Clock period = maximum latency of the pipeline stages
How to reduce the clock period?
• Make each stage of the pipeline smaller by increasing the 

number of pipeline stages
• Use faster transistors

Advanced Computer Architecture. Smruti R. Sarangi 22
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Limits to Increasing Frequency

Assume that we have the fastest possible transistors

Can we increase the frequency to 100 GHz?

Reasons

Advanced Computer Architecture. Smruti R. Sarangi 23
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Limits to increasing frequency - II

What does it mean to have a very high frequency? 

Before answering, keep these facts in mind: 

 Thumb 
Rule

P 🡪 power
f 🡪 frequency

 Thermo-d
ynamics

T 🡪 Temperature

We need to increase the number of pipeline 
stages 🡪 more hazards, more forwarding paths

1

2

3
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How many pipeline stages can we have?

We are limited by the latch delay

Even with an infinite number of stages, the minimum clock period 
will be equal to the latch delay 

Logic Latch LatchLogic Latch

Few stages More stages Even more stages
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Pipeline Stages vs IPC

 

CPI = CPIideal + stall_rate * stall_penalty

• The stall rate will remain more or less constant per instruction
 with the number of pipeline stages

• The stall penalty (in terms of cycles) will however increase
• This will lead to a net increase in CPI and loss in IPC 

Advanced Computer Architecture. Smruti R. Sarangi

As we increase the number of stages, 
the IPC goes down. 
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Summary: Why we cannot increase frequency 
by increasing the number of pipeline stages?

Power

Temperature

Effect of the Latch Delay

Stall penalties will increase
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McGraw-Hill   |

Since we cannot increase frequency …

Increase IPC
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Increase IPC

Issue more instructions per cycle
2, 4, or 8 instructions
Make it a superscalar processor 🡪 A processor 
that can execute multiple instructions per cycle
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In-order Superscalar Processor

Have multiple in-order pipelines. 
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In-order Superscalar Processor - II

• There can be dependences between instructions 
• Have O(n2) forwarding paths for an n-issue processor
• Complicated logic for detecting dependences, hazards, 

and forwarding
• Still might not be enough ... 
• To get the peak IPC (= n) in an n-issue pipeline, we need 

to ensure that there are no stalls
• There will be no stalls if there are no taken branches, and 

no data dependences between instructions.
• Programs typically do not have such long sequences of 

instructions without dependences
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What to do ... 

Don’t follow program order 

Too many dependences

mov r1, 1
add r3, r1, r2
add r4, r3, r2
mov r5, 1
add r6, r5, 1
add r8, r7, r6
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Execute out of order

mov r1, 1
add r3, r1, r2
add r4, r3, r2

mov r5, 1
add r6, r5, 1
add r8, r7, r6

Execute on a 2-issue OOO processor

Advanced Computer Architecture. Smruti R. Sarangi

Execute 2 instructions in parallel
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Continuation ...

mov r1, 1            
add r3, r1, r2
add r4, r3, r2

mov r5, 1
add r6, r5, 1
add r8, r7, r6

cycle 1
cycle 2
cycle 3

issue slot 1 issue slot 2

Advanced Computer Architecture. Smruti R. Sarangi

In Out-of-order (OOO) processors, the execution is not as 
per program order. It is as per the data dependence order 
🡪 the consumer is executed always after the producer.
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Basic Principle of OOO Processors

Create a pool of instructions

Find instructions that are 
mutually independent and have 
all their operands ready

Execute them out-of-order

Advanced Computer Architecture. Smruti R. Sarangi

ILP
Instruction level parallelism
The number of ready and independent instructions
we can simultaneously execute. 
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Revisit the Example

mov r1, 1 add r3, r1, r2 add r4, r3, r2 mov r5, 1 add r6, r5, 1 add r8, r7, r6

Pool of Instructions

Issue ready and 
mutually independent 

instructions

Advanced Computer Architecture. Smruti R. Sarangi 37
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Pool of Instructions: Instruction Window

• Needs to be large enough such that the requisite number of 
mutually independent instructions can be found.

• Typical instruction window sizes: 64 to 128

• How do we create a large pool of instructions in a program 
with branches? We need to be sure that all the instructions 
are on the correct path

for (i = 1; i < m; i++) {
for (j = 1; j < i; j ++ ) {

if (j %2 == 0) continue;
....

}
}

Advanced Computer Architecture. Smruti R. Sarangi

Example
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Problems with creating an Instruction Pool 

Typically 1 in 5 instructions is a 
branch

Predict the directions of the 
branches, and their targets
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Motivation for Branch 
Prediction

1

2

3

4

We 
need 
high 
IPC

This means 
that

we need a 
large

instruction 
window

It will have a 
lot of 

branches.

We need to 
predict
ALL the 
branches
correctly.
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The Maths of Branch Prediction

Number of instructions  n
Number of branches n/5
Probability of predicting any given branch incorrectly p
Probability of predicting ALL the branches correctly

Probability of making at least a single mistake (branch 
misprediction) in a pool of n instructions.
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For (n=100) : A plot of Pn vs p

If Pn = 10%, p has to be as low as 0.5% !!! 
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If we need a large instruction window, we 
need a very accurate branch predictor. The 
accuracy of the branch predictor limits the 

size of the instruction window.   
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Dependences between Instructions

Program Order Dependence

mov r1, 1
mov r2, 2

• One instruction appears after the other in program order

The program order is the order of instructions that is perceived by 
a single cycle in-order processor executing the program. 

Advanced Computer Architecture. Smruti R. Sarangi 45



McGraw-Hill   |

Data Dependences

RAW 🡪 Read after Write Dependence (True dependence)

mov r1, 1
      add r3, r1, r2

• It is a producer-consumer dependence. 
• The earlier instruction produces a value, and the later 

instruction reads it.
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Data Dependences - II

WAW 🡪 Write after Write Dependence (Output dependence)

mov r1, 1
      add r1, r4, r2

• Two instructions write to the same location
• The later instruction needs to take effect after the former
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Data Dependences - III

WAR 🡪 Write after Read Dependence (Anti dependence)

add r1, r2, r3
add r2, r5, r6

• Earlier instruction reads, later instruction writes
• The later instruction needs to execute after the earlier 

instruction has read its values
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Control Dependences

• The add instruction is control dependent on the branch(beq) 
instruction

• If the branch is taken then only the add instruction will execute, 
not otherwise

beq .label
.....
.label

add r1, r2, r3
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Basic Results

In-order processors respect all program order dependences. Thus, 
they automatically respect all data and control dependences. 

OOO processors respect only data and control dependences.
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Can output and anti dependences be removed?

• Don’t you think that these dependences are there 
because we have a finite number of registers. 

• What if we had an infinite number of registers? 

mov r1, 1
add r5, r6, r7
add r1, r4, r2
add r8, r9, r10

add r1, r2, r3
add r5, r6, r7
add r2, r5, r6
add r8, r9, r10

Advanced Computer Architecture. Smruti R. Sarangi

Set r1 Set r1Use r1 Use r1 Use r1

Avatar 1 Avatar 2

51



McGraw-Hill   |

Solution: Assume infinite number of physical registers

mov r1, 1
add  r1, r2, r3
add  r4, r1, 1
mov r2, 5
add r6, r2, r8
mov r1, 8
add r9, r1, r2

mov p11, 1
add  p12, p2, p3
add  p41, p12, 1
mov p21, 5
add p61, p21, p8
mov p13, 8
add p91, p13, p21

Code with architectural 
registers Code with physical registers

Advanced Computer Architecture. Smruti R. Sarangi

Architectural register Physical register

Format in this example: rx is mapped to px<avatar number>
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Renaming

Program with real 
(architectural) 

registers

Program with 
physical registers

RAW dependences

WAR dependences

WAW dependences

RAW dependences

Higher instruction level parallelism (ILP)
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Where are we now ...

Fetch + Decode + 
Rename

Instruction
Memory

Pool of 
Instructions

Execution Units
Issue + Reg. 
read

Write back results

Branch Predictor
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Issue with Write-back

To an outsider should it matter if the processor is in-order or OOO

                      NO

Processor
Instructions 

Register File

Memory

Update State
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Assume that there is an exception or interrupt

Languages like C or Java have dedicated functions that are called if there is a 
divide-by-zero in the code. 

The question is: 
• What if the sub instruction has executed when we enter the exception 

handler?
• An in-order processor will never do this.

mov r4, 10
mov r2, 0
div r3, r1, r2
sub r4, r4, 1

Divide by 0

Divide by zero 
handler
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Precise Exceptions

• Assume that the exception handler decides to do nothing and return 
back

• After this the sub instruction should be executed

• This is exactly what will happen in an in-order processor

• In an OOO processor there is a possibility that the sub inst. can 
execute out of order

• The outsider (exception handler) will see a different view as compared 
to the view it will see with an in-order processor.

Regular Instructions ÷ by 0 Exception 
handler

sub
inst. 
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Flow of actions
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Precise Exceptions - II

To an external observer
• The execution should always be correct and as per program order
• Even in the presence of interrupts and exceptions

Regular Instructions ÷ by 0 Exception 
handler

sub
inst. 

Regular Instructions ÷ by 0 Exception 
handler

sub
inst. 

Correct

Wrong
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Precise Exceptions - III

• We thus need precise exceptions

• Assume that the dynamic instructions in a program (ordered in program 
order) are: ins1, ins2, ins3 ... insn

• Assume that the processor starts the exception/interrupt handler after it 
has just finished writing the results of instruction: insk

• Then instructions: ins1 ... insk should have executed completely and 
written their results to the memory/register file

• AND, insk+1 and later instructions should not appear to have started their 
execution at all

• Such an exception or interrupt is precise

ins1 ins2 ins3 insk Exception insk+1
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Precise Exceptions in an OOO Processor

Processor
(Out-of-order execution)

Register File

Memory

Update State

In program 
order
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In-order pipelines have a limited IPC 
because
of hazards and branchesMulti-issue in-order pipelines do not 
solve the 
problem. Reason: dependences and 
interlocksHence, we issue instructions out-of-order (OOO). 
We need
a large instruction window to find sufficient 
independent insts. To sustain a large instruction window, we 
need a very
accurate branch predictor.To expose additional ILP, we can remove 

WAR/WAR
hazards. Finally, we need to have precise 
exceptions.

Conclusion
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The 
End


