
Loading and Unloading
Minifilters

© 2004 Microsoft Corporation. All rights reserved. 2

Features

■ A minifilter may be loaded at any time
■ A minifilters “altitude” defines its location in

the attachment stack
■ Filters have control over what volumes they

attach to
■ Filters may support multiple instances

(more then one attachment to a given
volume)

■ Filters automatically notified about existing
volumes

© 2004 Microsoft Corporation. All rights reserved. 3

Features

■ A minifilter may be unloaded at any
time
■ Filters have control over when they unload
■ If reloaded, will be inserted back in the

same frame

© 2004 Microsoft Corporation. All rights reserved. 4

Triggering Minifilter Load
■ Driver start type of BOOT, SYSTEM or AUTO when

the system boots
■ Must use existing load order group definitions for minifilters
■ This is necessary to support proper interoperation with

legacy filters
■ Service Start request via:

■ “sc start” or “net start” commands
■ service APIs

■ An explicit load request via:
■ “fltmc load” command
■ FltLoadFilter() API (Kernel mode)
■ FilterLoad() API (User mode)

© 2004 Microsoft Corporation. All rights reserved. 5

Load Order Groups
■ FSFilter Activity Monitor
■ FSFilter Undelete
■ FSFilter Anti-Virus
■ FSFilter Replication
■ FSFilter Continuous Backup
■ FSFilter Content Screener
■ FSFilter Quota Management
■ FSFilter System Recovery
■ FSFilter Cluster File System
■ FSFilter HSM
■ FSFilter Compression
■ FSFilter Encryption
■ FSFilter Physical Quota Management
■ FSFilter Open File
■ FSFilter Security Enhancer
■ FSFilter Copy Protection

© 2004 Microsoft Corporation. All rights reserved. 6

Minifilter Startup

■ DriverEntry() routine called when
driver is loaded
■ Do global initialization
■ Call FltRegisterFilter() API

■ Registers callbacks with Filter Manager

■ Call FltStartFiltering() API
■ Volume enumeration may start before this call

returns

© 2004 Microsoft Corporation. All rights reserved. 7

Triggering Instance Creation

■ At minifilter FltStartFiltering()
time
■ Existing volumes enumerated

■ Volume mount
■ An explicit attachment request via:

■ “fltmc attach” command
■ FltAttachVolume() API (kernel mode)
■ FilterAttach() API (user mode)

© 2004 Microsoft Corporation. All rights reserved. 8

What controls which instances
are created
■ Instance definitions in INF file

■ Defines: instance name, altitude, flags
■ Altitude values are defined and maintained by Microsoft
■ Flags contains OR-able bit values:

■ 0x01 = when set suppress automatic attachment
■ 0x02 = when set suppress manual attachment

■ Defines: DefaultInstance
■ Must be specified, used to order filters so mount and

instance setup callbacks are sent in the correct order
■ Also used with FltAttachVolume()/
FilterAttach() APIs when no instance name is
specified

© 2004 Microsoft Corporation. All rights reserved. 9

What controls which instances
are created (cont)

■ Instance definitions in INF file (cont)
■ Multiple instances may be defined
■ Definitions apply across all volumes
■ Currently uses AddRegistry section

■ A new “Instance” section type will be added to
INF files

■ InstanceSetup() callback in
FLT_REGISTRATION structure

© 2004 Microsoft Corporation. All rights reserved. 10

Sample Instance Definitions
■ From MiniSpy.inf:

[Minispy.AddRegistry]
HKR,"Instances","DefaultInstance",0x00000000,"Minispy - Top Instance"
HKR,"Instances\Minispy - Bottom Instance","Altitude",0x00000000,“365000"
HKR,"Instances\Minispy - Bottom Instance","Flags",0x00010001,0x1
HKR,"Instances\Minispy - Middle Instance","Altitude",0x00000000,“370000"
HKR,"Instances\Minispy - Middle Instance","Flags",0x00010001,0x1
HKR,"Instances\Minispy - Top Instance","Altitude",0x00000000,“385000"
HKR,"Instances\Minispy - Top Instance","Flags",0x00010001,0x1

© 2004 Microsoft Corporation. All rights reserved. 11

InstanceSetup callback
■ If NULL, the instance is always created
■ If defined:

■ FLT_INSTANCE_SETUP_FLAGS parameter
identifies why this instance is being created

■ Automatic
■ Manual
■ Newly mounted volume

■ VolumeDeviceType parameter identifies the
device type for this volume

■ FILE_DEVICE_DISK_FILE_SYSTEM
■ FILE_DEVICE_NETWORK_FILE_SYSTEM
■ FILE_DEVICE_CD_ROM_FILE_SYSTEM

© 2004 Microsoft Corporation. All rights reserved. 12

InstanceSetup callback (cont)

■ VolumeFilesystemType parameter
identifies the file system type for this
volume
■ FLT_FSTYPE_NTFS
■ FLT_FSTYPE_FAT
■ FLT_FSTYPE_LANMAN
■ Etc

■ Instance creation may be failed by
returning an error or warning NTSTATUS

© 2004 Microsoft Corporation. All rights reserved. 13

Triggering Minifilter Unload

■ Service stop request via:
■ “sc stop” or “net stop” commands
■ Service APIs

■ An explicit unload request via:
■ “fltmc unload” command
■ FltUnloadFilter() API (kernel mode)
■ FilterUnload() API (user mode)

© 2004 Microsoft Corporation. All rights reserved. 14

Controlling Minifilter Unload

■ Two mechanisms through
FLT_REGISTRATION structure
■ FilterUnload() callback
■ FLTFL_REGISTRATION_DO_NOT_
SUPPORT_SERVICE_STOP flag

■ FltMgr sets DriverUnload() routine in filter
■ It calls, at the appropriate time, any
DriverUnload() routine the minifilter may have
set in its DriverObject

© 2004 Microsoft Corporation. All rights reserved. 15

FilterUnload callback
■ If NULL, the minifilter cannot be unloaded
■ If defined:

■ Mandatory unloads (via service stop) cannot be
failed

■ Non-mandatory unloads (via
FltUnloadFilter() or FilterUnload()
APIs) may be failed by returning an error or
warning NTSTATUS

■ FLT_FILTER_UNLOAD_FLAGS parameter
identifies reason for unload

© 2004 Microsoft Corporation. All rights reserved. 16

FLTFL_REGISTRATION_DO_
NOT_SUPPORT_SERVICE_STOP flag

■ If set, a minifilter can not be unloaded
via a service stop request

■ If a FilterUnload() callback is
defined, the minifilter may be unloaded
via the FltUnloadFilter() or
FilterUnload() APIs

■ Use this flag if you always need to have
the option of failing an unload request

© 2004 Microsoft Corporation. All rights reserved. 17

Minifilter’s Responsibilities in
FilterUnload callback
■ Call FltUnregisterFilter(), Filter Manager

then:
■ Deletes all instances
■ Deletes volume contexts
■ Waits for outstanding Filter references

■ Entries pending in generic work queue
■ FltObjectReference()/FltObjectDereference()

■ When this returns all instances have been deleted
■ Do global cleanup:

■ Delete global EResources
■ Free global memory and delete lookaside lists
■ Unregister global callbacks

■ Timer, Process or Thread notification callbacks
■ Minifilter will be unloaded if a success NTSTATUS is

returned

© 2004 Microsoft Corporation. All rights reserved. 18

Triggering Instance teardown

■ A minifilter being unloaded
■ A volume being dismounted
■ An explicit detach request via

■ “fltmc detach” command
■ FltDetachVolume() API (kernel mode)
■ FilterDetach() API (user mode)

© 2004 Microsoft Corporation. All rights reserved. 19

Controlling Instance Teardown

■ In FLT_REGISTRATION structure:
■ InstanceQueryTeardown() callback
■ InstanceTeardownStart() callback
■ InstanceTeardownComplete()

callback

© 2004 Microsoft Corporation. All rights reserved. 20

InstanceQueryTeardown
Callback
■ Only called for explicit detach requests via
FltDetachVolume() or FilterDetach()
■ Not called for FilterUnload()
■ Not called for volume dismount

■ If NULL, instance cannot be torn down via
an explicit detach request

■ If defined:
■ May be failed by returning an error or warning

NTSTATUS
■ If a success NTSTATUS is returned, teardown

starts immediately

© 2004 Microsoft Corporation. All rights reserved. 21

InstanceTeardownStart
Callback
■ May be NULL, instance is still torndown
■ If defined:

■ Must:
■ Pass on or complete pended preOperation IOs

■ Use FltCompletePendedPreOperation()
■ Guarantee you won’t pend any new IOs (see FltCbdqXxx() routines)
■ Complete pended postOperation IOs

■ Use FltCompletePendedPostOperation()
■ May:

■ Close opened files
■ Make worker threads start doing minimal work
■ Cancel filter initiated IOs
■ Stop queuing new work items

■ No new operation callbacks are being sent to the minifilter, may
see operation callbacks for operations started before teardown was
initiated

© 2004 Microsoft Corporation. All rights reserved. 22

Outstanding Operation
Callbacks

■ Any currently executing preOperation
callback continues normal processing

■ Any currently executing postOperation
callback continues normal processing

■ Any IO that has completed the
preOperation callback and is waiting for
a postOperation callback may be
“drained” or “canceled”

© 2004 Microsoft Corporation. All rights reserved. 23

“Draining” Operation Callbacks
■ Is a PostOperation callback that is called asynchronously from the actual

operation being completed.
■ Always called at a safe IRQL

■ FLTFL_POST_OPERATION_DRAINING in “Flags” parameter is set
■ Receives “fake” CallbackData structure

■ Minimally initialized
■ Contains valid FLT_IO_PARAMETER_BLOCK (Iopb)
■ IoStatus.Status contains STATUS_FLT_POST_OPERATION_CLEANUP

■ Receives fully populated FLT_RELATED_OBJECTS structure
■ Must:

■ Perform minimal work
■ Cleanup context from preOperation callback
■ Return FLT_POSTOP_FINISHED_PROCESSING

■ Must Not:
■ Restore swapped data buffers
■ Attempt to defer the operation in any way

■ If drained, will not receive a normal postOperation callback

© 2004 Microsoft Corporation. All rights reserved. 24

“Cancelling” Operation
Callbacks

■ If buffers have been swapped for a
given operation, that operation is not
drainable
■ Instead, Filter Manager attempts to cancel

the operation

■ After canceling, Filter Manager waits for
the operation to complete

© 2004 Microsoft Corporation. All rights reserved. 25

Minifilter Generated IOs

■ These IOs will continue normal
processing

■ Minifilter should cancel any long lived
IOs
■ Oplocks, directory change notifications, etc.

■ Instance teardown will wait for all filter
generated IOs to complete

© 2004 Microsoft Corporation. All rights reserved. 26

InstanceTeardownComplete
callback
■ May be NULL, instance is still torndown
■ If defined:

■ When called, all outstanding IO operations have
been completed or drained

■ WARNING: This routine will not be called if:
■ There are any outstanding pended operations
■ There is any outstanding filter generated IO
■ The unload request will look like it has hung

■ Must
■ Close any files that are still open

■ Referencing an Instance (with FltObjectReference)
does not prevent this routine from being called

© 2004 Microsoft Corporation. All rights reserved. 27

Final Cleanup of Instance

■ Waits for outstanding Instance references
■ Waits for deferred IO work items to complete
■ Waits for any other references on the instance

■ FltObjectReference()/FltObjectDereference()

■ All remaining contexts deleted
■ The instance is now gone

© 2004 Microsoft Corporation. All rights reserved. 28

Debugging Aids

■ In checked builds:
■ Lots of internal asserts
■ When your minifilter unloads, the following

is reported on the debugger screen:
■ Contexts you have forgotten to release
■ Files opened by FltCreateFile() that you

have forgotten to close

■ Try !fltkd.help in debugger for
Filter Manager debugger extensions

