Loading and Unloading

! Minifilters

ﬁ Features

= A minifilter may be loaded at any time

= A minifilters “altitude” defines its location in
the attachment stack

= Filters have control over what volumes they
attach to

= Filters may support multiple instances
(more then one attachment to a given
volume)

= Filters automatically notified about existing
volumes

© 2004 Microsoft Corporation. All rights reserved. 2

* Features

= A minifilter may be unloaded at any
time
= Filters have control over when they unload

= If reloaded, will be inserted back in the
same frame

© 2004 Microsoft Corporation. All rights reserved. 3

Triggering Minifilter Load

= Driver start type of BOOT, SYSTEM or AUTO when
the system boots
= Must use existing load order group definitions for minifilters

= This is necessary to support proper interoperation with
legacy filters

« Service Start request via:
= 'sc start” or “net start” commands
= Service APIs
= An explicit load request via:
= fltmc load” command
= FltLoadFilter () API (Kernel mode)
- FilterLoad() API (User mode)

© 2004 Microsoft Corporation. All rights reserved. 4

Load Order Groups

FSFilter Activity Monitor
FSFilter Undelete

FSFilter Anti-Virus

FSFilter Replication

FSFilter Continuous Backup
FSFilter Content Screener
FSFilter Quota Management
FSFilter System Recovery
FSFilter Cluster File System
FSFilter HSM

FSFilter Compression
FSFilter Encryption

FSFilter Physical Quota Management
FSFilter Open File

FSFilter Security Enhancer
FSFilter Copy Protection

© 2004 Microsoft Corporation. All rights reserved.

* Minifilter Startup

« DriverEntry () routine called when
driver is loaded
= Do global initialization

- Call F1tRegisterFilter () API
. Registers callbacks with Filter Manager

- Call FltStartFiltering () API

. Volume enumeration may start before this call
returns

© 2004 Microsoft Corporation. All rights reserved. 6

* Triggering Instance Creation

« At minifilter F1tStartFiltering()
time
= EXisting volumes enumerated

= Volume mount

= An explicit attachment request via:
= f£ltmec attach” command
= FltAttachVolume () API (kernel mode)
- FilterAttach () API (user mode)

© 2004 Microsoft Corporation. All rights reserved. 7

What controls which instances
are created

= Instance definitions in INF file

= Defines: instance name, altitude, flags
. Altitude values are defined and maintained by Microsoft

. Flags contains OR-able bit values:
0x01 = when set suppress automatic attachment
0x02 = when set suppress manual attachment

= Defines: DefaultInstance

- Must be specified, used to order filters so mount and
instance setup callbacks are sent in the correct order

= Also used with F1tAttachVolume () /
FilterAttach () APIs when no instance name is

specified

© 2004 Microsoft Corporation. All rights reserved. 8

What controls which instances
i are created (cont)

= Instance definitions in INF file (cont)
= Multiple instances may be defined
= Definitions apply across all volumes

= Currently uses AddRegistry section

. A new “Instance” section type will be added to
INF files

= InstanceSetup () callback in
FLT_REGI STRATION structure

© 2004 Microsoft Corporation. All rights reserved. 9

Sample Instance Definitions

« From MiniSpy.inf:

[Minispy.AddRegistry]
HKR,"Instances","DefaultInstance”,0x00000000,"Minispy - Top Instance"
HKR,"Instances\Minispy - Bottom Instance","Altitude",0x00000000,"365000"
HKR,"Instances\Minispy - Bottom Instance","Flags",0x00010001,0x1
HKR,"Instances\Minispy - Middle Instance","Altitude",0x00000000,"370000"
HKR,"Instances\Minispy - Middle Instance","Flags"”,0x00010001,0x1
HKR,"Instances\Minispy - Top Instance","Altitude",0x00000000,"“385000"
HKR,"Instances\Minispy - Top Instance","Flags"”,0x00010001,0x1

© 2004 Microsoft Corporation. All rights reserved. 10

InstanceSetup callback

« If NULL, the instance is always created

« If defined:

. FLT INSTANCE SETUP FLAGS parameter
identifies why this instance is being created
- Automatic
. Manual
- Newly mounted volume

= VolumeDeviceType parameter identifies the
device type for this volume
. FILE DEVICE DISK FILE SYSTEM
. FILE DEVICE NETWORK FILE SYSTEM
. FILE DEVICE CD ROM FILE SYSTEM

© 2004 Microsoft Corporation. All rights reserved. 11

* InstanceSetup callback (cont)

= VolumeFilesystemType parameter
identifies the file system type for this
volume
. FLT FSTYPE NTFS
. FLT FSTYPE FAT
. FLT FSTYPE LANMAN
« Etc

= Instance creation may be failed by
returning an error or warning NTSTATUS

© 2004 Microsoft Corporation. All rights reserved. 12

* Triggering Minifilter Unload

= Service stop request via:
= 'sc stop’ Or 'net stop” commands
= Service APIs

= An explicit unload request via:
- f£ltmec unload” command

= FltUnloadFilter () API (kernel mode)
-« FilterUnload () API (user mode)

© 2004 Microsoft Corporation. All rights reserved. 13

* Controlling Minifilter Unload

= w0 mechanisms through
FLT REGISTRATION structure
= FilterUnload () callback
. FLTFL REGISTRATION DO NOT
SUPPORT SERVICE STOP flag
« FItMgr sets DriverUnload () routine in filter

- It calls, at the appropriate time, any
DriverUnload () routine the minifilter may have
set in its DriverObject

© 2004 Microsoft Corporation. All rights reserved. 14

* FilterUnload callback

« If NULL, the minifilter cannot be unloaded
« If defined:

= Mandatory unloads (via service stop) cannot be
failed

= Non-mandatory unloads (via
FltUnloadFilter () Or FilterUnload()
APIs) may be failed by returning an error or
warning NTSTATUS

« FLT FILTER UNLOAD FLAGS parameter
identifies reason for unload

© 2004 Microsoft Corporation. All rights reserved. 15

FLTFL_REGISTRATION_DO_
NOT_SUPPORT_SERVICE_STOP flag

« If set, a minifilter can not be unloaded
via a service stop request

« If a FilterUnload () callback is
defined, the minifilter may be unloaded
via the F1tUnloadFilter () or
FilterUnload () APIs

= Use this flag if you always need to have
the option of failing an unload request

© 2004 Microsoft Corporation. All rights reserved. 16

Minifilter’s Responsibilities in
FilterUnload callback

« Call FltUnregisterFilter (), Filter Manager
then:
= Deletes all instances
= Deletes volume contexts

= Waits for outstanding Filter references
- Entries pending in generic work queue
. FltObjectReference () /FltObjectDereference ()

= When this returns all instances have been deleted
= Do global cleanup:
- Delete global EResources

- Free global memory and delete lookaside lists

- Unregister global callbacks
. Timer, Process or Thread notification callbacks

= Minifilter will be unloaded if a success NTSTATUS is
© 258} H{Aﬁgr%goft Corporation. All rights reserved. 17

* Triggering Instance teardown

= A minifilter being unloaded
= A volume being dismounted

= An explicit detach request via
- f£ltmec detach” command
= FltDetachVolume () API (kernel mode)
- FilterDetach () API (user mode)

© 2004 Microsoft Corporation. All rights reserved. 18

* Controlling Instance Teardown

« IN FLT REGISTRATION structure:

- InstanceQueryTeardown () callback
= InstanceTeardownStart () callback

« InstanceTeardownComplete ()
callback

© 2004 Microsoft Corporation. All rights reserved. 19

InstanceQueryTeardown
Callback

= Only called for explicit detach requests via
FltDetachVolume () Or FilterDetach ()

= Not called for FilterUnload ()
= Not called for volume dismount

« If NULL, instance cannot be torn down via
an explicit detach request

« If defined:

= May be failed by returning an error or warning
NTSTATUS

= If @ success NTSTATUS is returned, teardown
starts immediately

© 2004 Microsoft Corporation. All rights reserved. 20

InstanceTeardownStart
Callback

= May be NULL, instance is still torndown

« If defined:

« Must:
- Pass on or complete pended preOperation 10s
Use FltCompletePendedPreOperation ()
- Guarantee you won't pend any new IOs (see F1tCbdqgXxx () routines)

= Complete pended postOperation IOs
Use FltCompletePendedPostOperation ()

= May:
= Close opened files
Make worker threads start doing minimal work
- Cancel filter initiated IO0s
- Stop queuing new work items
= No new operation callbacks are being sent to the minifilter, may
'_se_(;._ qcpccelration callbacks for operations started before teardown was
INitiate

© 2004 Microsoft Corporation. All rights reserved. 21

Outstanding Operation

* Callbacks

= Any currently executing preOperation
callback continues normal processing

= Any currently executing postOperation
callback continues normal processing

= Any IO that has completed the
preOperation callback and is waiting for
a postOperation callback may be
“drained” or “canceled”

© 2004 Microsoft Corporation. All rights reserved. 22

“"Draining” Operation Callbacks

= Is a PostOperation callback that is called asynchronously from the actual
operation being completed.
= Always called at a safe IRQL
= FLTFL POST OPERATION DRAINING in “Flags” parameter is set
= Receives “fake” CallbackData structure
= Minimally initialized
= Contains valid FLT IO PARAMETER BLOCK (Iopb)
« JTIoStatus. Status contalns STATUS FLT POST OPERATION CLEANUP
« Receives fully populated FLT_RELATED_OBJECTS structure

= Must:
= Perform minimal work
= Cleanup context from preOperation callback
= Return FLT POSTOP FINISHED PROCESSING
= Must Not:
= Restore swapped data buffers
= Attempt to defer the operation in any way
= If drained, will not receive a normal postOperation callback

© 2004 Microsoft Corporation. All rights reserved. 23

“Cancelling” Operation

* Callbacks

« If buffers have been swapped for a
given operation, that operation is not
drainable
= Instead, Filter Manager attempts to cancel

the operation

« After canceling, Filter Manager waits for
the operation to complete

© 2004 Microsoft Corporation. All rights reserved. 24

!_L Minifilter Generated IOs

« These I0s will continue normal
processing

« Minifilter should cancel any long lived
I0s

= Oplocks, directory change notifications, etc.

= Instance teardown will wait for all filter
generated IOs to complete

© 2004 Microsoft Corporation. All rights reserved. 25

InstanceTeardownComplete
callback

= May be NULL, instance is still torndown
« If defined:

= When called, all outstanding IO operations have
been completed or drained

- WARNING: This routine will not be called if:
There are any outstanding pended operations
There is any outstanding filter generated 10
The unload request will look like it has hung

= Must
. Close any files that are still open

= Referencing an Instance (with FItObjectReference)
does not prevent this routine from being called

© 2004 Microsoft Corporation. All rights reserved. 260

* Final Cleanup of Instance

= Waits for outstanding Instance references
- Waits for deferred IO work items to complete

- Waits for any other references on the instance
. FltObjectReference ()/FltObjectDereference ()

= All remaining contexts deleted
= The instance is now gone

© 2004 Microsoft Corporation. All rights reserved. 27

* Debugging Aids

= In checked builds:

= Lots of internal asserts

= When your minifilter unloads, the following
is reported on the debugger screen:
. Contexts you have forgotten to release

. Files opened by F1ltCreateFile () that you
have forgotten to close

« Iry '£1tkd.help in debugger for
Filter Manager debugger extensions

© 2004 Microsoft Corporation. All rights reserved. 28

