
Edit the text with
your own short
phrase.

The animation is
already done for
you; just copy and
paste the slide into
your existing
presentation.

Retrofit

Edit the text with
your own short
phrase.

The animation is
already done for
you; just copy and
paste the slide into
your existing
presentation.

How to bring to your project

compile 'com.squareup.retrofit2:retrofit:2.3.0'
compile 'com.squareup.retrofit2:converter-gson:2.3.0'

Edit the text with
your own short
phrase.

The animation is
already done for
you; just copy and
paste the slide into
your existing
presentation.

What you need

• Model class which is used to map the JSON data to
• Interfaces which defines the possible HTTP operations
• Retrofit.Builder class - Instance which uses the interface and the Builder

API which allows defining the URL end point for the HTTP operation.

Edit the text with
your own short
phrase.

The animation is
already done for
you; just copy and
paste the slide into
your existing
presentation.

Model
Simple class with setters and getters
 public class TimeZoneApiResponse

{

 @SerializedName("status")
 @Expose
 private String status;
 @SerializedName("message")
 @Expose
 private String message;

@SerializedName("countryCode")
 @Expose
 private String countryCode;

public String getStatus() {
 return status;
}

public void setStatus(String status) {
 this.status = status;
}

public String getMessage() {
 return message;
}

public void setMessage(String message) {
 this.message = message;
}

public String getCountryCode() {
 return countryCode;
}

public void setCountryCode(String countryCode)
{
 this.countryCode = countryCode;
}

Edit the text with
your own short
phrase.

The animation is
already done for
you; just copy and
paste the slide into
your existing
presentation.

Interface

public interface TimeZoneAPI {

 @GET("get-time-zone")
 Call<TimeZoneApiResponse> getTimeZone(@Query("key") String apiKey,
 @Query("format") String format,
 @Query("by") String searchBy,
 @Query("lat") String latitude,
 @Query("lng") String longitude);
}

There are five built-in annotations: GET, POST, PUT, DELETE, and HEAD
Another annotations for data providing: Query, Path, Body

Edit the text with
your own short
phrase.

The animation is
already done for
you; just copy and
paste the slide into
your existing
presentation.

Retrofit.Builder

public TimeZoneAPI getTimeZoneAPI() {
 return new Retrofit.Builder()
 .baseUrl("http://api.timezonedb.com/v2/")
 .client(initClient())
 .addConverterFactory(GsonConverterFactory.create())
 .build().create(TimeZoneAPI.class);

}

@NonNull
private OkHttpClient initClient() {
 HttpLoggingInterceptor interceptor = new HttpLoggingInterceptor();
 interceptor.setLevel(HttpLoggingInterceptor.Level.BODY);
 return new OkHttpClient.Builder()
 .connectTimeout(CLIENT_TIMEOUT_MILLIS, TimeUnit.MILLISECONDS)
 .addNetworkInterceptor(new StethoInterceptor())
 .addInterceptor(interceptor)
 .build();
}

Edit the text with
your own short
phrase.

The animation is
already done for
you; just copy and
paste the slide into
your existing
presentation.

Authorization

Edit the text with
your own short
phrase.

The animation is
already done for
you; just copy and
paste the slide into
your existing
presentation.

/**
 * An invocation of a Retrofit method that sends a request to a webserver and returns a response.
 * Each call yields its own HTTP request and response pair. Use {@link #clone} to make multiple
 * calls with the same parameters to the same webserver; this may be used to implement polling or
 * to retry a failed call.
 *
 * <p>Calls may be executed synchronously with {@link #execute}, or asynchronously with {@link
 * #enqueue}. In either case the call can be canceled at any time with {@link #cancel}. A call that
 * is busy writing its request or reading its response may receive a {@link IOException}; this is
 * working as designed.
 *
 * @param <T> Successful response body type.
 */
public interface Call<T> extends Cloneable {
 /**
 * Synchronously send the request and return its response.
 *
 * @throws IOException if a problem occurred talking to the server.
 * @throws RuntimeException (and subclasses) if an unexpected error occurs creating the request
 * or decoding the response.
 */
 Response<T> execute() throws IOException;

 /**
 * Asynchronously send the request and notify {@code callback} of its response or if an error
 * occurred talking to the server, creating the request, or processing the response.
 */
 void enqueue(Callback<T> callback);

What you get when create a request

Edit the text with
your own short
phrase.

The animation is
already done for
you; just copy and
paste the slide into
your existing
presentation.

How to deal with a Call

public interface Callback<T> {
 /**
 * Invoked for a received HTTP response.
 * <p>
 * Note: An HTTP response may still indicate an application-level failure such as a 404 or 500.
 * Call {@link Response#isSuccessful()} to determine if the response indicates success.
 */
 void onResponse(Call<T> call, Response<T> response);

 /**
 * Invoked when a network exception occurred talking to the server or when an unexpected
 * exception occurred creating the request or processing the response.
 */
 void onFailure(Call<T> call, Throwable t);
}

Edit the text with
your own short
phrase.

The animation is
already done for
you; just copy and
paste the slide into
your existing
presentation.

Sources & useful links

http://square.github.io/retrofit/

http://www.vogella.com/tutorials/Retrofit/article.html

http://www.jsonschema2pojo.org/

