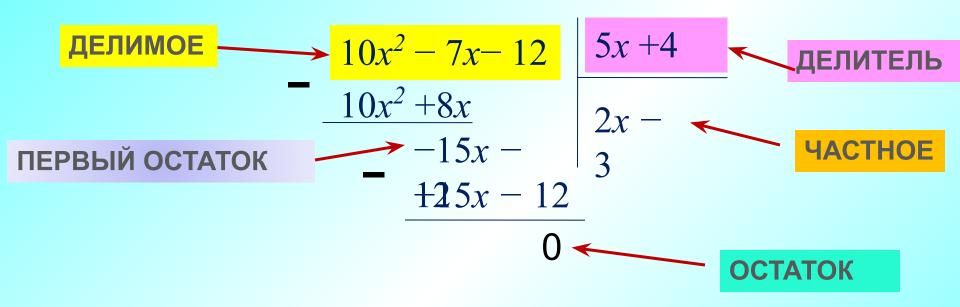
Тема: Деление многочленов

Любой многочлен P(x), содержащий только переменное x и его натуральные степени, можно записать в стандартном виде

$$P(x) = a_0 x^n + a_1 x^{n-1} + a_{n-1} x + a_n$$


где a_0, a_1, a_{n-1}, a_n – некоторые действительные числа.

Если $a_0 \neq 0$, то многочлен P(x) называют многочленом n- ой степени (или n- степени), член $a_0 x^n$ старшим членом, a_n- свободным членом.

 $P(x) = a_{0}$, где $a_{0} \neq 0$, называют многочленом нулевой степени. Число 0 называют нулевым многочленом.

В результате сложения, вычитания и умножения многочленов получаются многочлены. Особое место в теории многочленов занимает деление многочленов уголком.

Разделить уголком многочлен $P(x) = 10x^2 - 7x - 12$ на Q(x) = 5x + 4

Остаток равен нулю, поэтому многочлен P(x) делиться на многочлен Q(x)

Пример 1 : Разделить многочлен $P(x) = 3x^4 + 2x^2 - 1$ на многочлен $Q(x) = x^2 + x$.

Степень остатка -5x - 1 меньше степени делителя $x^2 + x$, деление закончено.

Ответ: $3x^2 - 3x + 5$ — частное, -5x - 1 —остаток.

Формула деления многочленов с остатком

Если многочлен P(x) степени n > 1 делят на многочлен Q(x) степени $k \ge 1, k \le n$ то справедливо равенство:

$$\mathbf{P}(x) = \mathbf{M}(x) \cdot \mathbf{Q}(x) + \mathbf{R}(x)$$

где M(x) – частное, степень которого m = n - k, R(x) – остаток, степень которого 1 < k.

Чтобы разделить многочлен P(x) на многочлен Q(x) нужно:

- 1. Расположить делимое и делитель по убывающим степеням x;
 - 2. Разделить старший член делимого на старший член делителя; полученный одночлен сделать первым членом частного;
 - 3. Первый член частного умножить на делитель; результат вычесть из делимого; полученная разность является первым остатком;
 - 4. Чтобы получить следующий член частного, нужно с первым остатком поступить так, как поступали с делимым и делителем в пунктах 2 и 3.

Пример 2 : Разделить многочлен $3x + 4x^4 + 1 - 15x^3 + 2x^5 - 9x^2$ на многочлен $2x^2 - x^3$

Ответ: $-2x^2 - 8x - 1$ — частное, $-7x^2 + 3x + 1$ — остаток.

Свойства делимости многочленов

- 1. Если многочлен P(x) делится на многочлен Q(x), а многочлен Q(x) делится на многочлен M(x), то многочлен P(x) делиться на многочлен M(x).
- 2. Если многочлены P(x) и Q(x) делятся на многочлен M(x), то многочлены P(x) + Q(x) и P(x) Q(x)

делятся на многочлен M(x),

а многочлен $P(x) \cdot Q(x)$ делиться на многочлен $M^{2}(x)$.

Найдите частное:

1)
$$(x^2 + 3x - 4)$$
: $(x + 4)$

2)
$$(x^2 - 7x + 10):(x - 5)$$

3)
$$(6x^3 + 7x^2 - 6x + 1):(3x - 1)$$

4)
$$(4x^3 - 5x^2 + 6x + 9)$$
: $(4x + 3)$

5)
$$(15x^3 - x^2 + 8x - 4)$$
: $(3x^2 + x + 2)$

6)
$$(9x^4 - 9x^3 - x^2 + 3x - 2)$$
: $(3x^2 - 2x + 1)$

Литература

Алгебра и начала математического анализа 10 класс. Учебник для общеобразовательных учреждений. Базовый и профильный. Колягин Ю. М., Ткачева М.В., Федорова Н.Е., Шабунин М.И.,

под редакцией Жижченко А.Б., М.: Просвещение, 2010