

Задача №12. In aqua veritas.

КОМАНДА «ВНУКИ МЕНДЕЛЕЕВА» Г. РОССОШЬ, ВОРОНЕЖСКАЯ ОБЛАСТЬ

Условие задачи:

Одним из наиболее серьёзных типов экологических катастроф является загрязнение рек и водоёмов в ходе прорыва дамб промышленных предприятий. Из-за этого в водосборный бассейн реки могут попасть соли тяжёлых металлов, продукты нефтепереработки, коррозийные вещества. Фильтры, способные сорбировать вредные вещества – один из способов очистки загрязненной воды. Они повсеместно используются и в быту. Предложите модель образца загрязненной в ходе экологической катастрофы воды, содержащей в себе примеси неполярных органических соединений и соли тяжелых металлов. Необходимо, чтобы этот образец можно было приготовить в условиях школьной лаборатории. Предложите способы его очистки так, чтобы эту воду можно было потом использовать в бытовых целях (мытьё посуды, стирка, полив растений и т.д.).

2

Классификация предприятий

- Металлургические
- Нефтеперерабатывающие
- Машиностроительные
- Целлюлозно-бумажные
- Текстильные

Создание модели сточных вод

CoSO₄, MnSO₄, FeSO₄, NiSO₄, CrCl₃, ксилол,

Рис. 1. Исходные вещества.

Рис. 1.1. Исходные вещества (2)

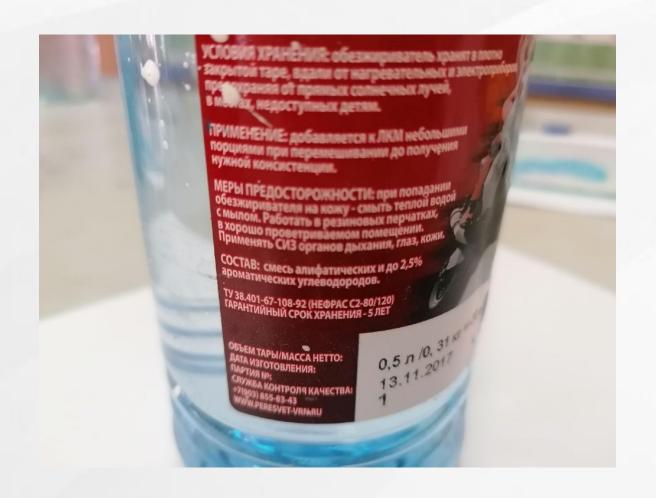


Рис. 2. Исходные вещества (3)

Рис. 2.1. Исходные вещества (4)

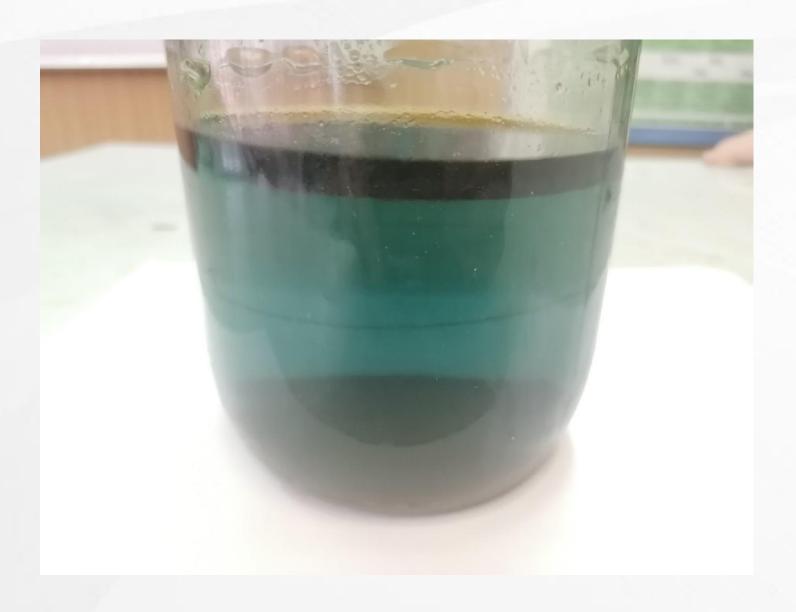


Рис. 3. Модель сточных вод.

Отстаивание

Рис. 4. Отстаивание.

Фильтрование

Рис. 5. Фильтрование.

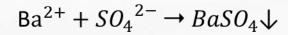
Рис. 6. После фильтрования.

Адсорбция

Рис. 7. Угольный фильтр. См. п. 1-4 «Список источников»



Рис. 8. Фильтрование


Рис. 9. рН.

Доочистка химическим способом

$$Fe^{2+} + 2OH^{-} \rightarrow Fe(OH)_{2} \downarrow$$

 $4Fe(OH)_{2} + O_{2} + 2H_{2}O \rightarrow 4Fe(OH)_{3}$

Рис. 10. Добавление КОН.

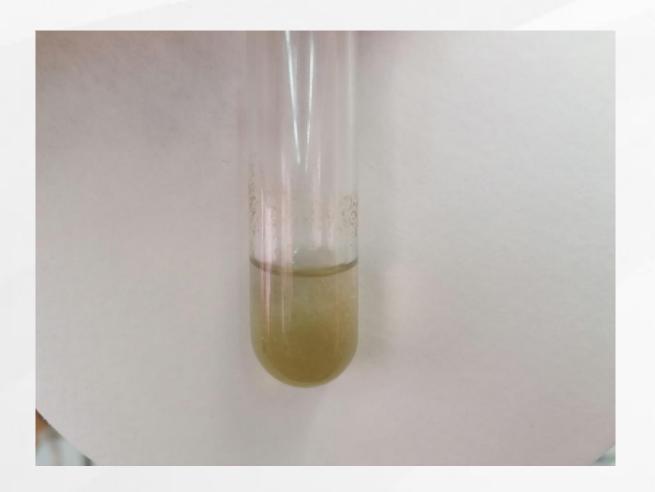


Рис. 11. Добавление К₃PO₄.

Рис. 12. Добавление Ba(NO₃)

2

Полученный образец

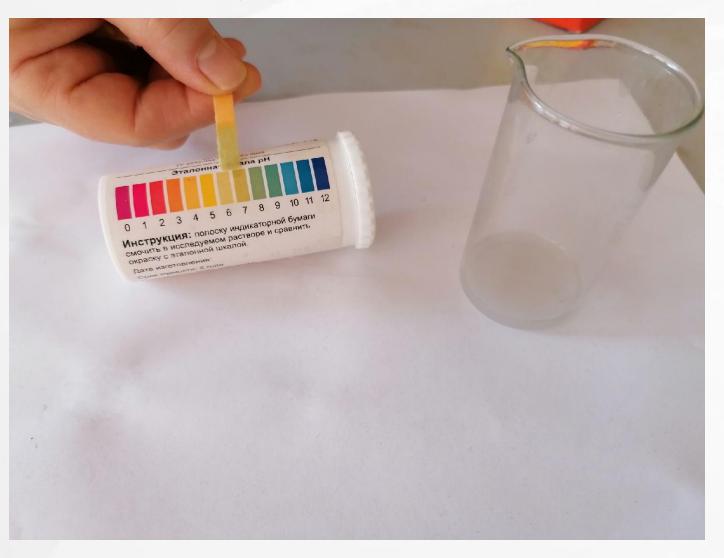
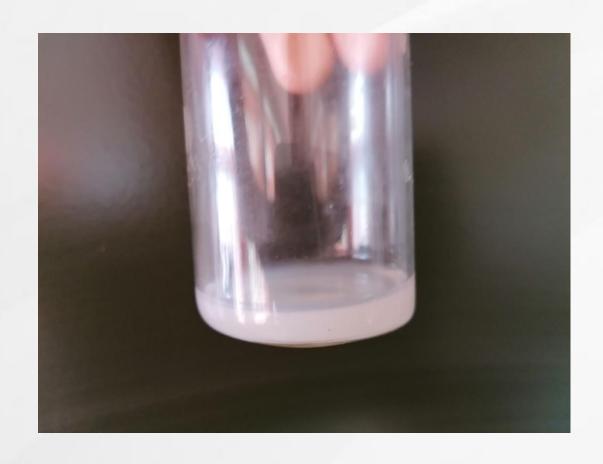



Рис. 13. Итог.

Определение ионов хлора

$$Ag^+ + Cl^- \rightarrow AgCl \downarrow$$

В результате очистки образец содержит ионы:

$$K^+$$
, Cl^- , NO_3^-

Цикл очистки

Отстаивание → Фильтрация → Адсорбция → Фильтрация → Химическая доочистка

Список источников:

- [1] М.И. Киевский, В.Н. Евстратов, В.Д. Семенюк. Москва : Химия, 1978. 190 с, «Очистка сточных вод предприятий хлорной промышленности», с. 44.
- [2] Михайленко Я.И. «Курс общей и неорганической химии» Москва : Высш. школа, 1966. 664 с.
- [3] В.В. Вольхин, С.А. Колесова, Г.В. Леонтьева, Е.А. Шульга "Химические процессы в экологии", Пермь, 1998
- [4] Перри Дж.Г. Справочник инженера-химика. Том 1. (Chemical Engineers' Handbook, 1963), Перевод с четвертого английского издания под общей редакцией Н.М. Жаворонкова и П.Г. Романкова; с. 768