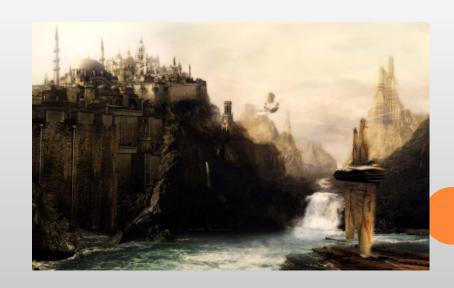
КОМПЬЮТЕРНАЯ ГРАФИКА. ЧТО ЭТО?

Участник:

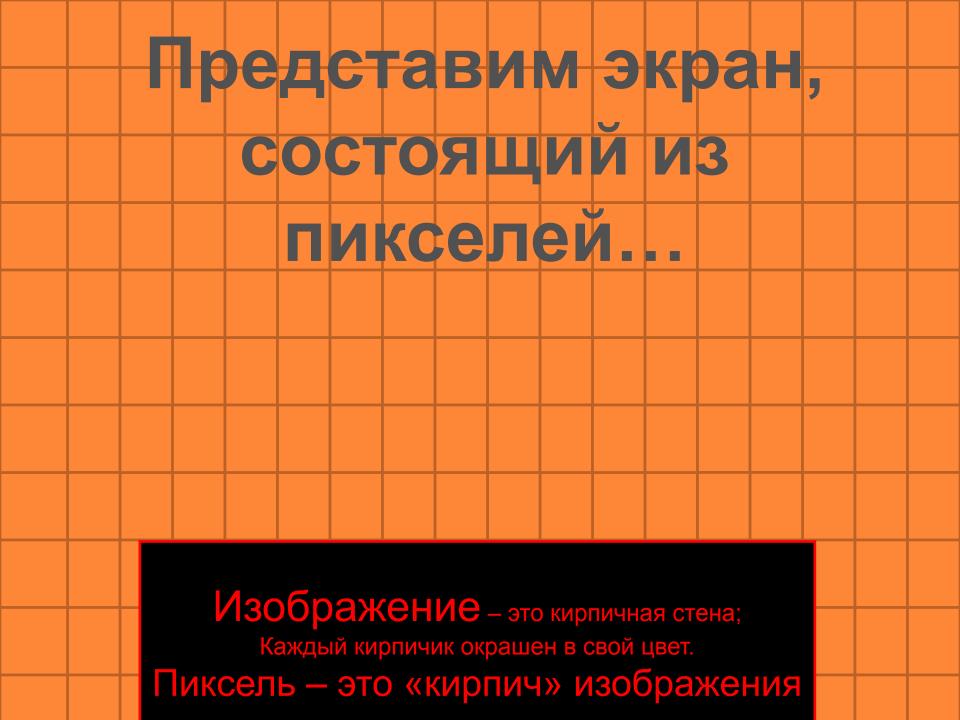
Ученик 11A класса Н.А. Сафонов Идентификатор: 267-676-529


Руководитель:

Зам. дир. по НМР, учитель информатики Н.В. Цуркан

Сегодня актуальны вопросы:

Изображение "живое" и созданное на компьютере - в чём разница?

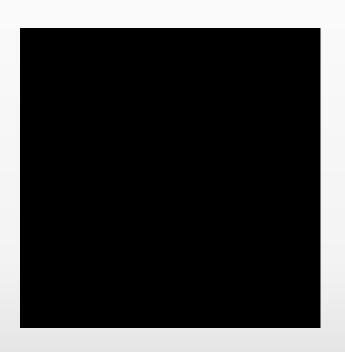

От чего зависит качество созданного на

созданного на компьютере изображения?

РАСТРОВАЯ И ВЕКТОРНАЯ ГРАФИКА

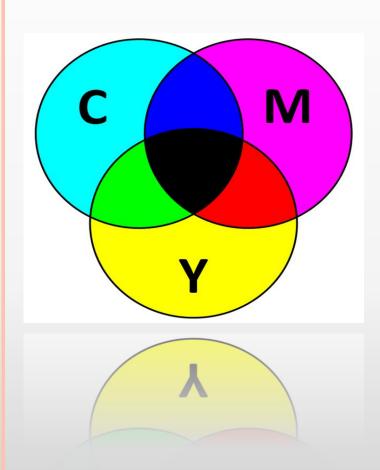
 □ Создавать и хранить графические объекты в компьютере можно двумя способами — как растровое или как векторное изображение.

ПРИМЕРЫ РАСТРОВОЙ И ВЕКТОРНОЙ ГРАФИКИ


Векторное изображение

Растровое изображение

ЦВЕТОВАЯ МОДЕЛЬ RGB



Всего различных цветов: 256*256*256 = 16777 216

(True Color)

Модель RGB используется в телевизорах, мониторах, проекторах, сканерах, цифровых фотоаппаратах... Основные цвета в этой модели: красный (Red), зеленый (Green), синий (Blue).

ЦВЕТОВАЯ МОДЕЛЬ СМҮК

- •Четырёхцветная автотипия (СМҮК: Cyan, Magenta, Yellow, Key color) субтрактивная схема формирования цвета, используемая прежде всего в полиграфии для стандартной триадной печати.
- •По-русски эти цвета часто называют так: голубой, пурпурный, жёлтый, хотя в профессиональной среде часто подразумевают cyan, magenta и yellow. В полиграфии используют ещё и четвёртый цвет черный (black). Чёрный цвет обозначают буквой К, так как В уже занята синим цветом.

ГЛУБИНА ЦВЕТА

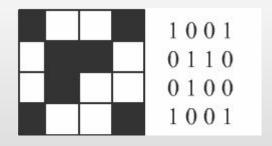
Глубина цвета (качество цветопередачи, битность изображения) — это термин компьютерной графики, означающий объём памяти в количестве бит, используемых для хранения и представления цвета при кодировании одного пиксела растровой графики или видео.

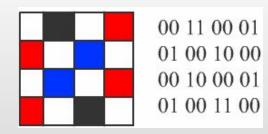
Зная глубину цвета і (биты), можно вычислить количество цветов в палитре:

$$K=2^{i}$$

изменение глубины цвета

бита


8 бит



бита

Формирование изображения

Для того чтобы на экране монитора формировалось изображение, информация о каждой точке (код цвета точки) должна храниться в видеопамяти компьютера.

ОБЪЁМ ВИДЕОПАМЯТИ

Формула для вычисления объёма видеопамяти:

$$V=I\times X\times Y\times L$$

Где V — информационный объём видеопамяти (в битах)

Х, У – количество точек по горизонтали и по вертикали

I – глубина кодирования

L – количество страниц.

Достоинства растровой графики

- 1. Растровая графика эффективно представляет изображения фотографического качества.
- 2. Компьютер легко управляет устройствами вывода, которые используют точки для представления отдельных пикселей. Поэтому растровые рисунки могут быть легко распечатаны на принтерах.

НЕДОСТАТКИ РАСТРОВОЙ ГРАФИКИ

- 1. Для хранения растровых изображений требуется большой объём памяти.
- 2. Растровое изображение после масштабирования или вращения может потерять свою привлекательность

Достоинства векторной графики

- □ 1. Векторные рисунки, состоящие из тысяч примитивов, занимают память, объём которой не превышает нескольких сотен килобайт.
- 2. Векторные объекты задаются с помощью описаний. Поэтому, чтобы изменить размер векторного рисунка, нужно исправить его описание. Следовательно, векторные изображения могут быть легко масштабированы без потери качества.

Недостатки векторной графики

- Векторная графика не позволяет получать изображений фотографического качества.
- Векторные изображения описываются десятками, а иногда и тысячами команд. В процессе печати эти команды передаются устройству вывода (например, лазерному принтеру). При этом может случиться так, что на бумаге изображение будет выглядеть совсем иначе, чем хотелось пользователю, или вообще не распечатается.

Графические форматы файлов

СПАСИБО ЗА ВНИМАНИЕ