

Применение технологий Интернета вещей для оценки экологического состояния городских территорий

Канд. экон. наук, доцент

Иванов А.В.

По следам конференций SGEM

Цель работы

Применение онлайн методов измерений и технологий Интернета вещей, для оценки немедленных токсикологических, социальноэпидемиологических, метеорологических и экологических эффектов состояния окружающей городской среды Создание экологического сегмента CIM(City Information Model)

Онлайн мониторинг городских территорий

Internet of Things (Интернет вещей) – это сеть физических объектов, которые имеют встроенные технологии, позволяющие осуществлять взаимодействие с внешней средой, передавать сведения о своем состоянии и принимать данные извне.

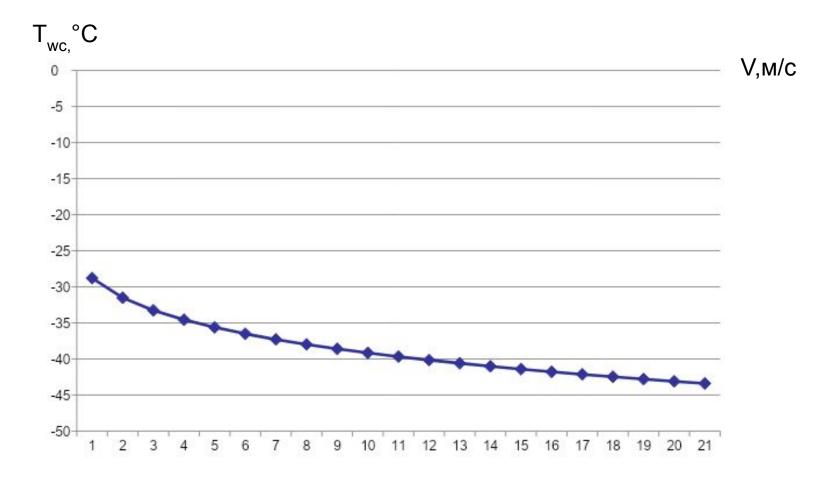
Измерение, передача и оценка информации в экологическом сегменте City Information Model

Любой пользователь с доступом в интернет

Здоровая среда и показатели уязвимости Только быстро меняющиеся параметры!!!

- 1. Ощущаемая температура ЕТ, включая
 - □ Условия комфорта: +18°C до +24°C, влажности воздуха от 55% до 70% и скорости ветра до 5 м/с.
 - □ Тепловой шок: риск нарастает при отклонении от условий комфорта
 - □ Ветрохолодовой эффект (международный стандарт ISO 11079-2015)
- 1. Шумовое загрязнение среды (ПДУ=55 дБА днем)
- 2. Загрязнение воздуха токсичными газообразными веществами (ПДК $_{\rm мp}$, ИЗА)
- 3. Загрязнение воздуха аэрозолями, включая твердые взвешенные частицы (мелкодисперсная пыль PM_{10} , $PM_{2.5}$)
- 4. Солнечный удар

Микроклиматические и микропогодные параметры в городской застройке


Таблица 1 Основные закономерности изменения микроклимата в городе

Климатические	Закономерности формирования микроклимата (по отношению
характеристики	к загородным условиям)
Солнечная	Снижение до 20% в зависимости от загрязнения воздуха,
радиация	времени года и суток, высоты окружающих зданий
Температура	Повышение на 1-4°С в зависимости от плотности застройки,
воздуха	относительной площади искусственных покрытий и зеленых насаждений, условий проветриваемости
Скорость ветра	Изменение на 20-70% в среднем по территории в
окорость встра	зависимости от плотности застройки:
	Усиление порывистости и горизонтальных градиентов
	скорости
Примечание: под	плотностью застройки понимается отношение площади,
занятой зданиямі	и, к общей площади участка

Зависимость ощущаемой температуры (ветрохолодового индекса) от скорости ветра

Индекс теплового удара

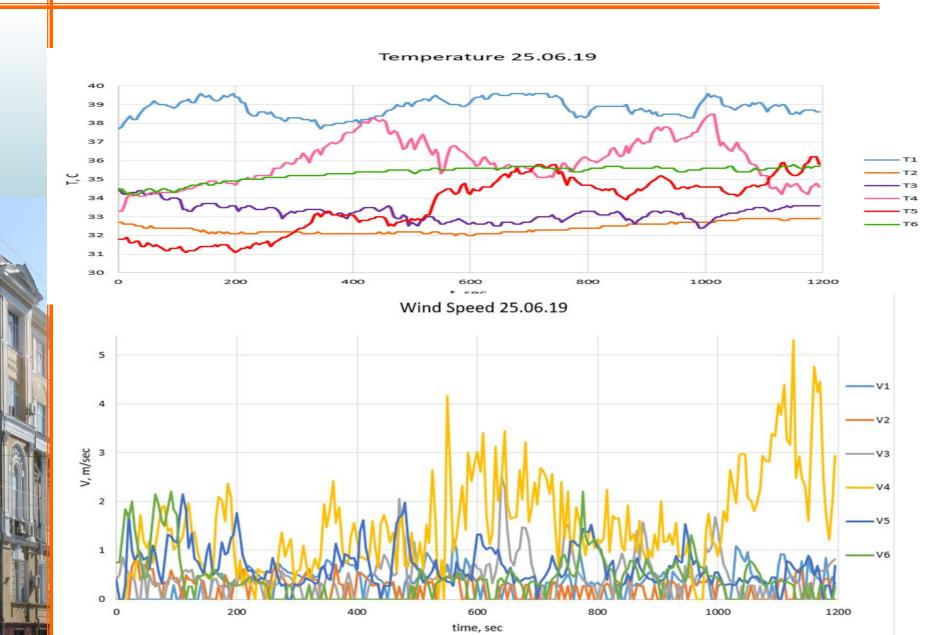
Значения индекса теплового удара при различных сочетаниях температуры и влажности воздуха и его воздействие на организм человека

С	10%	15%	20%	25%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%
13.3	40.6	42.2	44.4	47.2	50.6	54.4	58.3	61.7	66.1						
40.6	37.8	38.9	40.6	42.8	45.0	47.8	50.6	53.9	57.2	61.1	65.0				
37.8	35.0	36.1	37.2	38.3	40.0	41.7	43.3	46.1	48.9	52.2	55.6	57.8	62.2		
35.0	32.2	32.8	33.9	34.4	35.6	36.7	38.3	40.0	41.7	43.3	45.6	48.3	51.1	54.4	57.8
32.2	29.4	30.0	30.6	31.1	32.2	32.8	33.9	35.0	35.6	36.7	37.8	38.9	41.1	42.8	45.0
29.4	26.7	27.2	27.8	28.3	28.9	29.4	30.0	30.6	31.1	31.7	32.2	32.8	33.9	35.0	36.1
26.7	23.9	24.4	25.0	25.0	25.6	26.1	26.1	26.7	27.2	27.2	27.8	28.3	29.4	30.0	30.0
23.9	21.1	21.7	22.2	22.2	22.8	22.8	23.3	23.3	23.9	23.9	24.4	24.4	25.0	25.0	25.6
			-			Х	аракт	ер те	пловоі	го возд	цейств	ия			
наче	ние И	1Ж	Возмо	жное	расст	ройс	LBO 31	цоров	ья у чу	увстви	тельн	ой час	сти на	селе	ния
54.5	и вы	ше	тепловой/солнечнй удар												
	40.	5-54.5	солнечный удар, спазмы сосудов от перегрева при длительном воздействии или физической активности имеют высокую вероятность												
	32-	40.5	возможны солнечный удар, спазмы сосудов от перегрева при длительном воздей- ствии или физической активности												
	26.7	7-32	возможно переутомление при длительном воздействии и/или физической активно- сти												

Индекс ветрового охлаждения

Карта значений индекса ветрового охлаждения (WCTI)

						Значени	ия инде	екса ох	лажде	ния					
v, м/с Температура (°C)															
0.0	4.4	1.7	0.0	-1.1	-3.9	-6.7	-9.4	-12.2	-15.0	-17.8	-20.6	-23.3	-26.1	-28.9	-31.7
2.2	2.2	-0.6	-2.8	-3.9	-7.2	-10.6	-13.9	-17.2	-20.6	-23.9	-26.7	-30.0	-33.3	-36.7	-40.0
4.5	1.1	-2.8	-4.4	-6.1	-9.4	-12.8	-16.1	-20.0	-23.3	-26.7	-30.0	-33.3	-37.2	-40.6	-43.9
6.7	0.0	-3.9	-5.6	-7.2	-10.6	-14.4	-17.8	-21.7	-25.0	-28.3	-32.2	-35.6	-39.4	-42.8	-46.1
8.9	-1.1	-4.4	-6.7	-8.3	-11.7	-15.6	-18.9	-22.8	-26.1	-30.0	-33.9	-37.2	-41.1	-44.4	-48.3
11.2	-1.7	-5.0	-7.2	-8.9	-12.8	-16.1	-20.0	-23.9	-27.2	-31.1	-35.0	-38.3	-42.2	-46.1	-50.0
13.4	-2.2	-5.6	-7.8	-9.4	-13.3	-17.2	-20.6	-24.4	-28.3	-32.2	-36.1	-39.4	-43.3	-47.2	-51.1
15.6	-2.2	-6.1	-8.3	-10.0	-13.9	-17.8	-21.7	-25.6	-29.4	-32.8	-36.7	-40.6	-44.4	-48.3	-52.2
17.9	-2.8	-6.7	-8.9	-10.6	-14.4	-18.3	-22.2	-26.1	-30.0	-33.9	-37.8	-41.7	-45.6	-49.4	-53.3
20.1	-3.3	-7.2	-9.4	-11.1	-15.0	-18.9	-22.8	-26.7	-30.6	-34.4	-38.3	-42.2	-46.1	-50.0	-53.9
22.4	-3.3	-7.2	-10.0	-11.1	-15.6	-19.4	-23.3	-27.2	-31.1	-35.0	-38.9	-42.8	-46.7	-51.1	-55.0
24.6	-3.9	-7.8	-10.0	-11.7	-15.6	-19.4	-23.9	-27.8	-31.7	-35.6	-39.4	-43.3	-47.8	-51.7	-55.6
26.8	-3.9	-8.3	-10.6	-12.2	-16.1	-20.0	-23.9	-28.3	-32.2	-36.1	-40.0	-44.4	-48.3	-52.2	-56.1
		обморо	жениє	наступ:	ает чере	3:		30 мин	ут	10 мин	ут	5 минут			


Результаты измерений на территории Нижнего Новгорода

	Территория	Температура, °С			сть ветра м/с)	Направл	ение ветра	ветро-холодовой	ветро-холодовой	
	Территория	с сайта	фактическа я	с сайта	фактическа я	с сайта	фактическ ое	индекс фактический	индекс расчетный	
1	Слияние Оки и Волги 14:15	-1,9	0,4	4,8	4,7	3Ю3	ЮЗ	4,9376	2,6284	
2	Микрорайон "Седьмое небо"	-2	0,2	5	4,4	3Ю3	3Ю3	5,2956	2,1466	
3	Берег Мещерского озера (северная сторона)15:26	-2	0	5	3,6	3Ю3	3Ю3	6,5709	2,1466	
4	Силикатное озеро 12:20	-8	-6	5	3,9	ююз	ююз	0,8116	-3,4856	
5	Двор ЖК Жюль Верн 18:10	-4	-2	6	8	ЮЗ	ююз	-3,6916	-1,8038	
6	Заречный бульвар 15:30	-3	-4	4	2,1	ююз	Ю	6,2808	3,2174	
7	Двор ЖК Аквамарин 10:45	-5	-3	7	4	Ю	Ю	3,2174	-4,9423	
8	Московское шоссе, остановка Масложиркомбинат (Московский р-н) 12:05	-6,8	2,7	4,2	5,50	ЮВ	СВ	5,7345	-0,5587	
9	Московское шоссе, сквер "Канавинский" (Канавинский р-н) 12:44	-6,8	3	4,2	5,10	ЮВ	СВ	6,6772	-0,5587	
10	Р. Ока, восток от Мукомольного завода 14:16	3,4	4,5	2,2	2,1	ЮЗ	ЮЗ	12,6959	11,7054 11	

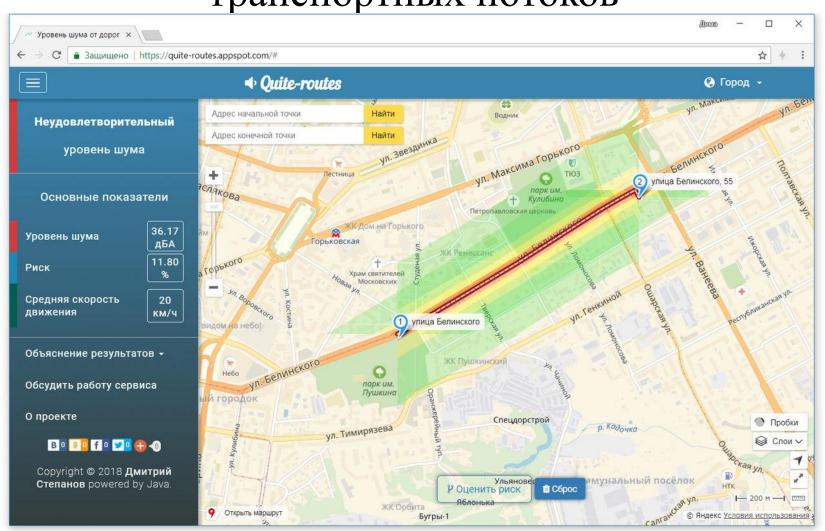
Сравнение данных во время летней жары

Нормативные требования по учету микроклимата

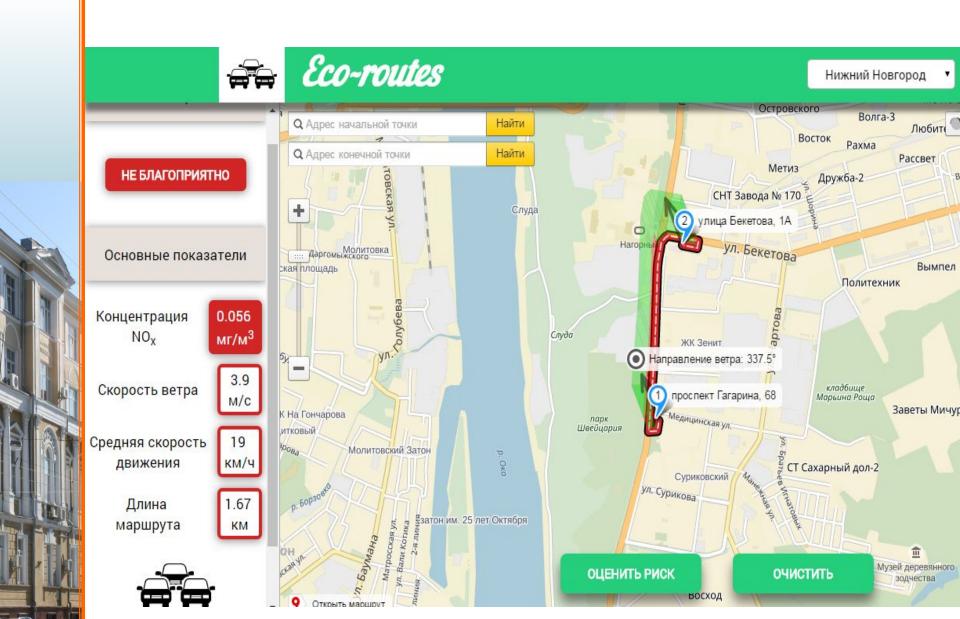
и микропогодных характеристик

- ISO 11079-2015 «Эргономика термальной среды. Определение холодового стресса и его интерпретация на основе показателей локального охлаждающего воздействия»
- МГСН 4.04-94 «Многофункциональные здания и комплексы», вступившими в силу в 1999 году. В соответствии с этими нормами «...необходимо выполнять проверку ветрового режима в пешеходных зонах для обеспечения комфортности пребывания людей в этих зонах при действии ветра»
- МГСН 4.19-2005 «Временные нормы и правила проектирования многофункциональных высотных зданий и зданий комплексов»

Создаваемый онлайн сервис


метеорологической безопасности и комфорта

- Расчет ощущаемой температуры на основных улицах города
- Выявление и оценка опасности теплового шока в уязвимых зонах
- Расчет ощущаемой температуры в рекреационных зонах
- Выявление и оценка опасности переохлаждения и обморожения
- Рекомендации жителям по пребыванию в зонах ветрохолодового эффекта
- Рекомендации жителям по пребыванию в зонах теплового шока


Онлайн мониторинг уровня шума от

транспортных потоков

Пример расчёта риска от выбранного маршрута

Результаты

- Разработан методический подход к использованию Интернета вещей и онлайн технологий для исследования городских микротерриторий как сегмент City Information Model.
- По результатам мониторинга Нижнего Новгорода и Кёльна была выявлена изменчивость исследуемых показателей по уровню шума, загрязнению воздуха, ветрохолодовому эффекту и тепловому шоку
- Созданы и эксплуатировались несколько лет онлайн сервисы Quite-routes, Eco-routes, Eco-water и Бесконечная река (Endless river)
- Начиная с осени 2020 все сервисы будут перенесены на сайт ННГАСУ в единый экопортал для продолжения тестирования на выбранной территории (например, Започаинье).

Предложения

- Применить для исследования Започаинья предлагаемую систему онлайн мониторинга как сегмент City Information Model.
- Выполнить оценку комфортности, гидрометеорологической и экологической безопасности микротерриторий Започаинья
- На основе результатов оценки комфортности и безопасности включить в регламенты территориальных зон Започаинья показатели комфортности и предложить мероприятия по достижению целевых показателей
- Создать модельное открытое общественное пространство нового IT типа на территории Започаинья на основе онлайн мониторинга гидрометеорологической и экологической среды
- Создать онлайн Интернет ресурс сопровождения виртуальных и реальных прогулок по Започаинью с посещением минералогического и палеонтологического музеев в ННГАСУ

Спасибо за внимание!