

Схема работы GDCT кодека

Сжатие информации

Методы Сжатия информации

С потерями

Без потерь

Стратегии сжатия

- Статистическая стратегия сжатия предполагает определение вероятностей элементов.
- В блочных методах статистика элементов отдельно кодируется и добавляется к сжатому блоку.
- В *поточных* (адаптивных) методах вычисление вероятностей для элементов поступающих данных производится на основе априорных вероятностей из предыдущих данных.
- Преобразующая стратегия не предполагает вычисления вероятностей. Результат преобразования имеет лучшую структуру данных и может быть сжат простым и быстрым методом

Классификация методов сжатия

	Стати	стические	Преобразующие		
	Поточные	Блочные	Поточные	блочные	
Модель	Адаптивный	Статистический	SEM, VQ,	DFT, DCT	
«источник	HUFFMAN	HUFFMAN	MTF, DC,		
без			SC, DWT		
памяти»					
(поток					
элементов)					
Модель	CM, DMC,	CMBZ, precon-	LZ*	BWT, ST	
«источник с	PPM	ditioned PPMZ			
памятью»					
(поток слов)					
Модель	Адаптивный	Статистический	RLE, LPC	PBS, ENUC	
элементов	ARIC	ARIC			
или битов					

Расшифровка названий методов

- CM (Context modeling) контекстное моделирование.
- DMC (Dynamic Marcov compression) динамическое марковское сжатие
- (частный случай СМ)
- PPM (Predictio by partial match) –предсказание по частичному совпадению (частный случай СМ).
- LZ* (LZ77, LZ78, LZH, LZW) методы Зива Лемпеля.
- HUFFMAN (Huffman coding) кодирование Хаффмана.
- RLE (Run length encoding) кодирование длин повторов.
- SEM (Separate exponents and mantissas) разделение экспонент и мантисс
- (представление целых чисел).
- UNIC (Universal coding) универсальное кодирование
- (частный случай SEM).
- ARIC (Arithmetic coding) арифметическое кодирование.
- RC (Range coding) интервальное кодирование
- (вариант арифметического кодирования).

Расшифровка названий методов

- DC (Distance coding) кодирование расстояний.
- IF (Inversion frequencies) «обратные частоты» (вариант DC).
- MTF (Move to front) «сдвиг к вершине», «перемещение стопки книг».
- ENUC (Enumerate coding) нумерующее кодирование.
- DFT (Discrete Fourier transform) ДПФ- дискретное преобразование Фурье
- DCT (Discrete cosine transform) ДКП дискретное косинусное преобразование
- DWT (Discrete wavelet transform) дискретное вейвлет преобразование.
- LPC (Linear prediction coding) кодер линейного предсказания.
- PBS (Parallel blocks sorting) сортировка параллельных блоков.
- ST (Sort transformation) частичное сортирующее преобразование
- (частный случай PBS)
- BWT (Burrows Wheeler transform) преобразование Барроуза Уиллера (частный случай ST)

Характеристики сжатия

- a) фактор сжатия r= FS/F0,
- б) коэффициент сжатия k=F0/FS=1/r,
- в) качество сжатия η=100(1-r)=100(F0-FS)/FS.
- Здесь F0 и FS размеры исходного и выходного (сжатого файлов).
- Очевидно, что при r<1, k>1 происходит сжатие выходного файла. Параметр η<100 показывает относительное уменьшение в процентах сжатого файла по сравнению с исходным файлом.

Энтропия сообщения по К.Шеннону – bps (bit per symbol)

$$H = -\sum_{i=1}^{N} P_i \cdot \log_2(P_i)$$

Теоретический предел длины сжатого сообщения

$$L' = n \cdot H$$

$$L' = -n\sum_{i=1}^{N} P_i \cdot \log_2(P_i)$$

$$L = n \cdot l$$
,

днина символа в битах

нисло символов

Пример расчета энтропии сообщения длины сжатого сообщения и коэффициента сжатия

- Сообщение:
- Длинношеее животное
- Частоты символов

symbol	Д	Л	И	Н	О	Ш	e	ж	В	Т	
k _i	1	1	2	3	3	1	4	1	1	1	1

- Число символов n=19
- Энтропия H=3.221 bps
- Длина сжатого сообщения L'=n · H=61.201 bit
- Длина исходного сообщения L=n · 8=152 bit
- Коэффициент сжатия k=2.484

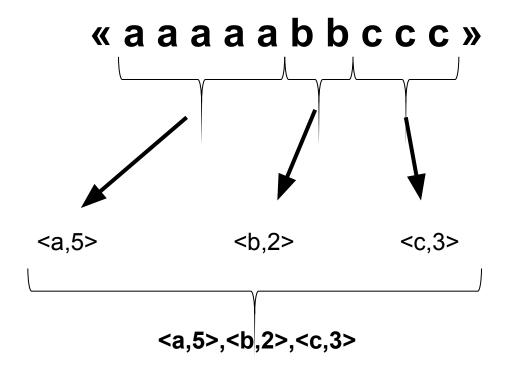
Пример расчета энтропии сообщения длины сжатого сообщения и коэффициента сжатия

- Сообщение:
- 2718281828
- Частоты символов

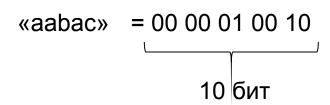
symbol	2	7	1	8
k _i	3	1	2	4

- Число символов n=10
- Энтропия H=1.846 bps
- Длина сжатого сообщения L'=n · H=18.46 bit
- Длина исходного сообщения L=n · 8=80 bit
- Коэффициент сжатия k=4.33

Некоторые методы сжатия без потерь


Энтропийное кодирование

Кодирование Хаффмана


Арифметическое кодирование

Кодирование длин непрерывных Последовательностей (RLE)

Кодирование длин непрерывных последовательностей (RLE)

Алгоритм кодирования Хаффмана

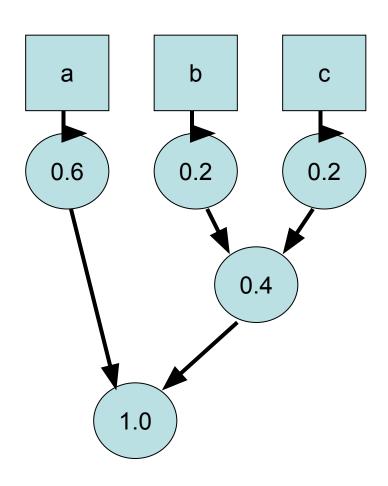
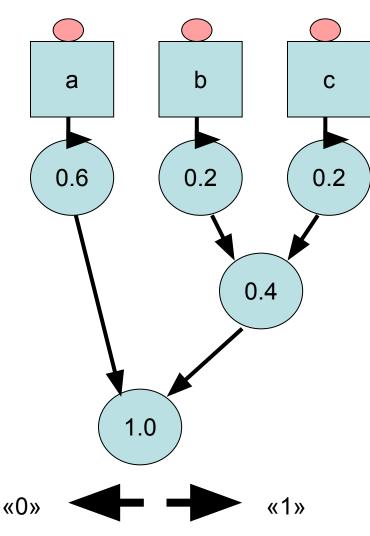
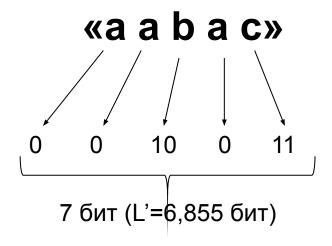


Таблица вероятностей:

а	b	С
00	01	10
0.6	0.2	0.2


L'=6.855 бит

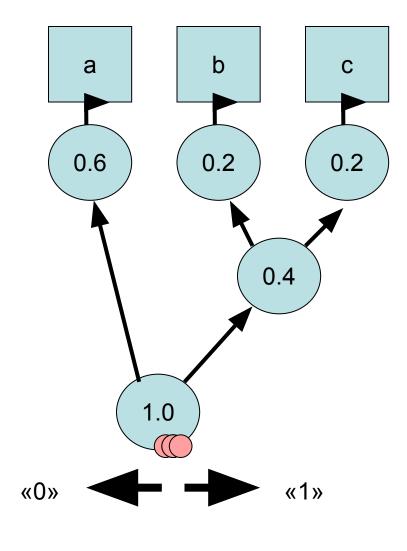
Построение дерева Хаффмана



Кодирование Хаффмана

Дерево Хаффмана

Коды Хаффмана



0 - движение по левой ветви

1 - движение по правой ветви

Декодирование Хаффмана

Дерево Хаффмана

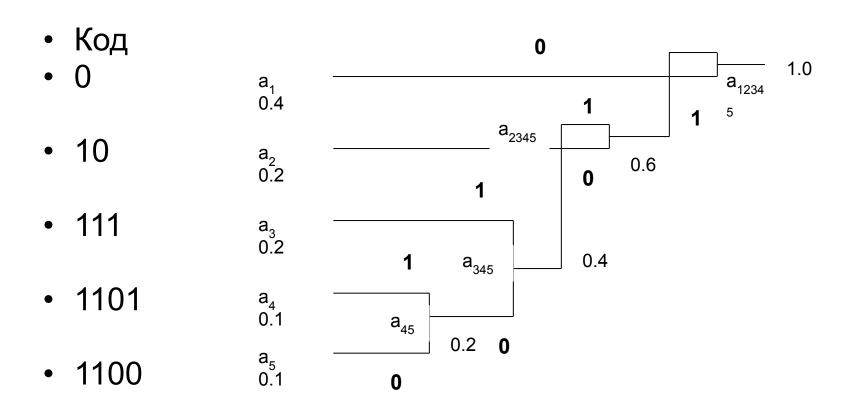
Последовательность кодов Хаффмана:

0010011

0 - a

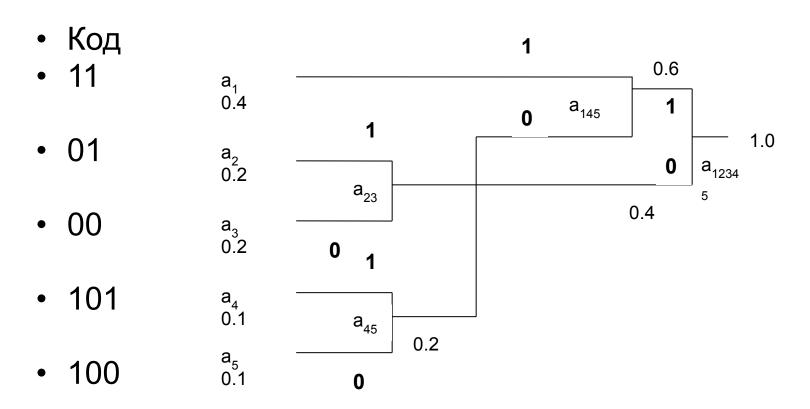
0 - a

10-b


0 - a

11-c

Сообщение восстановлено «ааbас»


0 - движение по левой ветви1 - движение по правой ветви

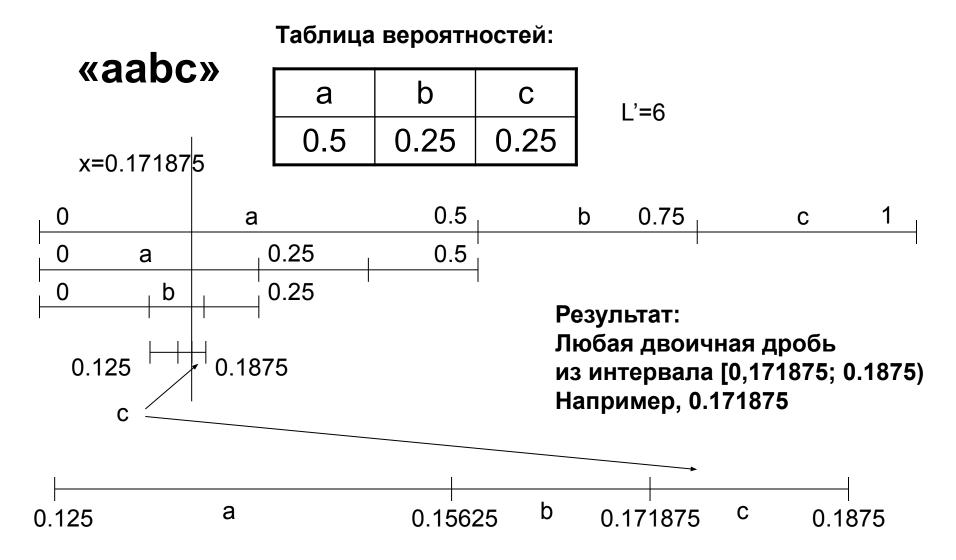
Дерево Хаффмана – 1 вариант

• Энтропия H=2.2 bps дисперсия длин кодов 1.36

Дерево Хаффмана – 2 вариант

• Энтропия H=2.2 bps, Дисперсия длин кодов 0.16

Дисперсия длин кодов


- Средняя длина кода
- *I_i* длина і-го кода в битах

- Дисперсия кода
- В стандартах используют готовые коды VLC (коды переменной длины)

$$H = -\sum_{i=1}^{N} P_i \cdot \log_2(P_i)$$

$$D = \sum_{i=1}^{n} p_i (l_i - H)^2$$

Арифметическое кодирование

Арифметическое кодирование

«aabc»

Таблица вероятностей:

а	b	С
0.5	0.25	0.25

Результат:

Любая двоичная дробь

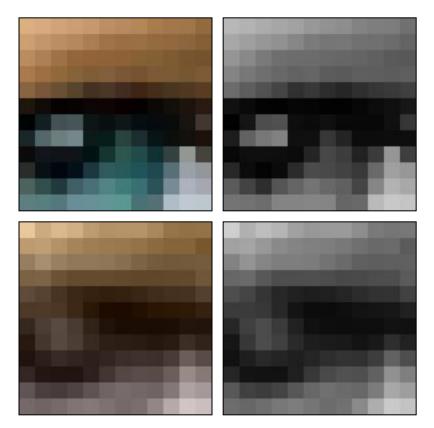
из интервала [0,171875; 0.1875)

Например, 0.171875

Выходной поток: 0.171875d=0.001011b=«001011»

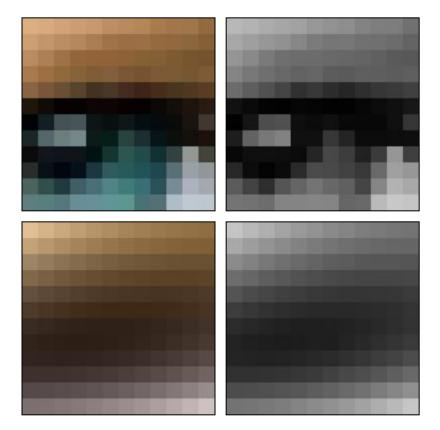
Сравнение кодов

- VLC удобны для реализации, не универсальны, средняя длина отлична от энтропии
- Двухпроходные коды Хаффмана средняя длина кода близка к энтропии, информация о дереве должна присоединяться к сжатой информации.
- Просты в программировании
- Адаптивные коды Хаффмана не требуют априорных сведений о вероятностях символов, компрессор и декомпрессор должны быть идентичными
- Арифметический кодер средняя длина кода практически равна энтропии. Достаточно сложен в программировании. Требования априорных сведений, как у кода Хаффмана. Дерево кодирования-декодирования однозначно


Исходное изображение «Masha»

Результат восстановления

RLE: 14953 байт (сжатие: 25,29)


RLE+Huffman: 11047 байт (сжатие: 34,24) RLE+Arithm: 11022 байт (сжатие: 34,32)

PSNR(Y)=20,578 дБ, сжатие: 34,32

Результат восстановления

RLE: 5929 байт (сжатие: 63,80)

RLE+Huffman: 4229 байт (сжатие: 89,44) RLE+Arithm: 4209 байт (сжатие: 89,87)

PSNR(Y)=19,752 дБ, сжатие: 89,87

