

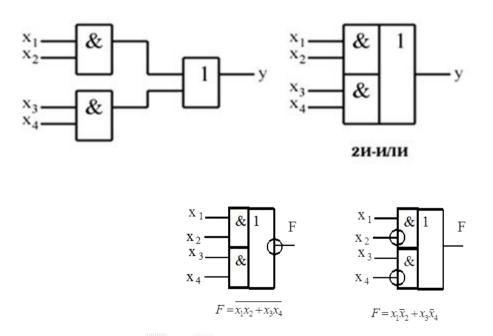
Лекция 1 на тему: «Основы микропроцессорной техники»

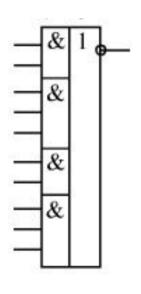
Леонов С.В., доцент ОАР, к.т.н.

Математическая логика. Булева алгебра

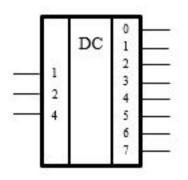
2 ноября 1815 – 8 декабря 1864

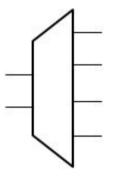
- Английский математик и логик. Профессор математики Королевского колледжа Корка (ныне Университетский колледж Корк).
- Один из основателей математической логики.
- В честь него назван тип данных *Boolean* в программировании

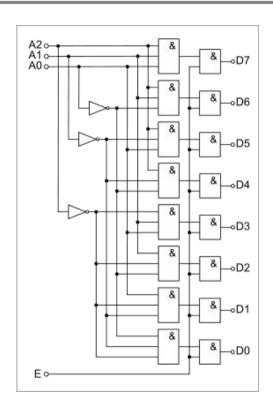



Простые логические элементы

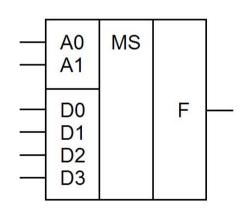
Название эле	мент	ra	И	или	Исключающее ИЛИ	И-НЕ	или-не
F			x · y	x + y	$x \oplus y$	x y	x y
			х & у	x y	x ⊙ y	00000	47.500 A.W.
			x A y	xVy	1000000		- 11-352 rg- 12
Графическое обозначение [гост	NSI	8 -/		=1		
Таблица	х	V	конъюнкция	дизъюнкция	неравнозначность	/	/
истинности	0	0	0	0	О	1	1
истинности		-		1	1	1	1
	0	1	0	1	1	1	0
8	1	0	0	1	1	1	0
]	1	1	1	1	0	0	0

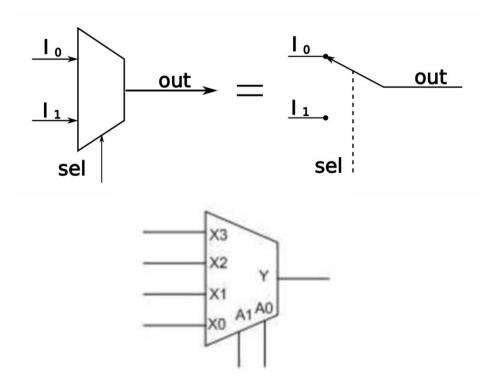

Сложные логические элементы

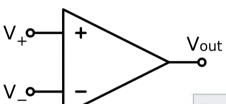


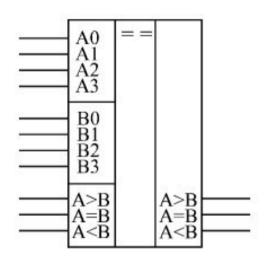


Обозначение дешифратора

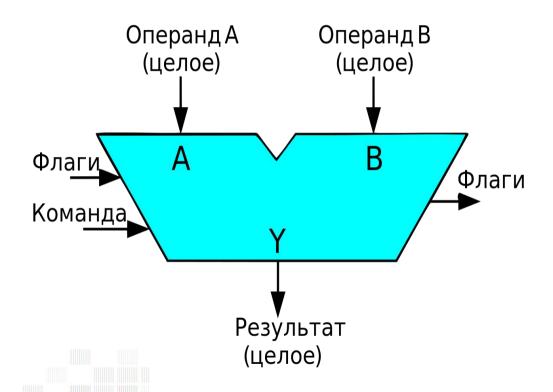




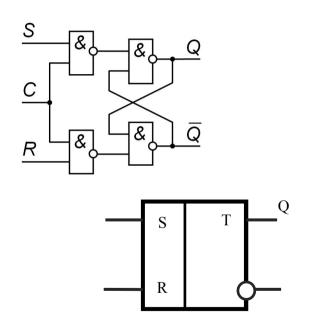

Принцип действия мультиплексора



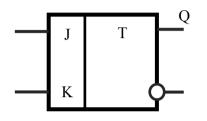
Компаратор кода (цифровой компаратор)



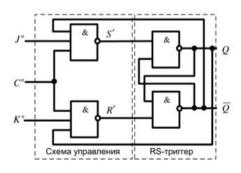
Вхс	ды	Выходы			
\boldsymbol{A}	B	A < B	A = B	A > B	
0	0	0	1	0	
0	1	1	0	0	
1	0	0	0	1	
1	1	0	1	0	

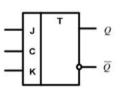


Арифметико-логическое устройство


RS mpurrep

R _i	Si	Q _{i-1}	Q _i	
0	0	0	0	Режим хранения
0	0	1	1	Режим хранения
0	1	0	1	Установка лог.1
0	1	1	1	Установка лог.1
1	0	0	0	Установка лог.0
1	0	1	0	Установка лог.0
1	1	X	?	Запрещенное состояние

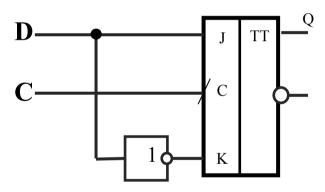

ЈК триггер



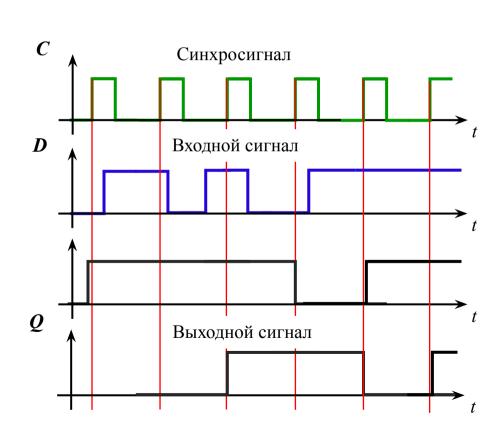
J(Jump) – установка лог. 1

K(Kill) – установка лог. 0

C(Clock) – синхронный вход

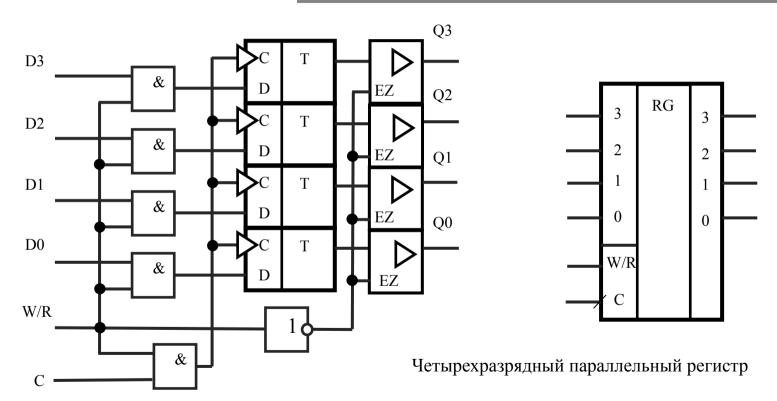


K _i	J _i	Q _i	Q _{i+1}	
0	0	0	0	Режим хранения
0	0	1	1	Режим хранения
0	1	0	1	Установка лог.1
0	1	1	1	Установка лог.1
1	0	0	0	Установка лог.0
1	0	1	0	Установка лог.0
1	1	0	1	Счётный режим
1	1	1	0	Счётный режим

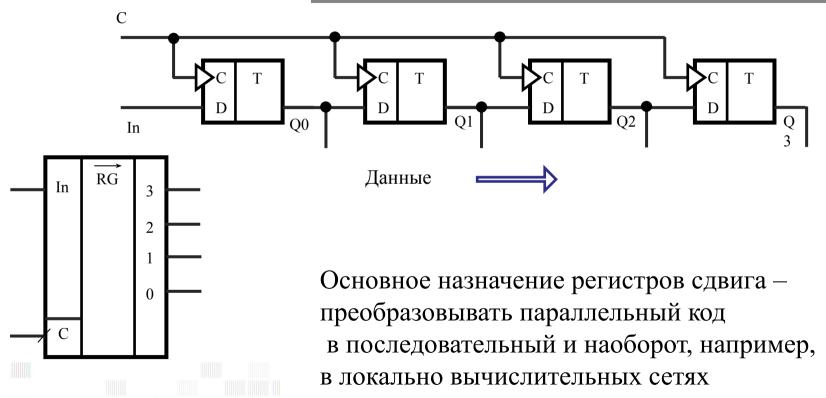


D триггер

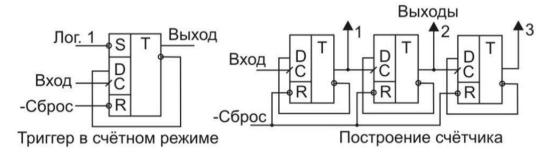
D-триггер (Delay) – триггер задержки. На выходе триггера сигнал будет сохранятся до тех пор пока не поступит синхроимпульс.

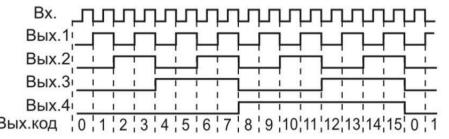


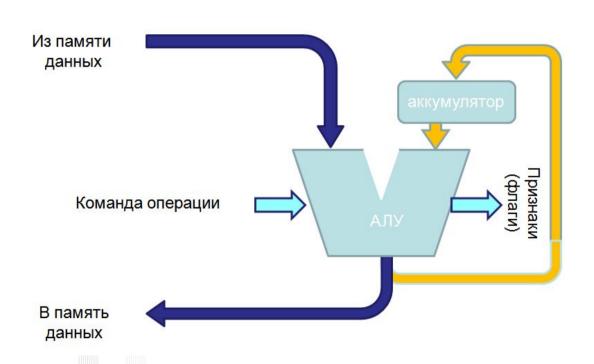
Используется для фильтрации, нормализации, синхронизации и задержки цифрового сигнала



Параллельный регистр


Сдвиговый регистр

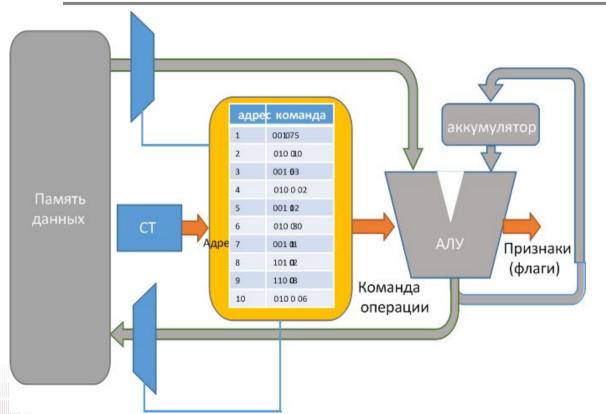



Счётчик прямой

Построение счётчика из триггеров

Структура операционного блока

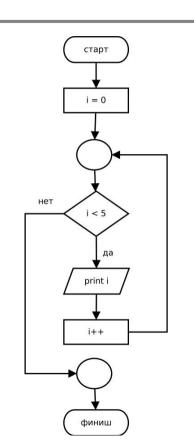



Адрес памяти	значение	Условное название	LD 75 SV #1
#1	75	Показания счётчика в текущем месяце (ct9)	LD 63
#2	63	Показания счётчика в прошлом месяце (ct8)	SV #2 LD 12
#3	12	Тариф (k)	SV #3
#4		[количество] ← ct9 – ct8	0,110
#5			LD #1
#6		[результат] ← количество*k	SUB #2 SV #4
#7			1 17 43
			LD #3 MUL #4

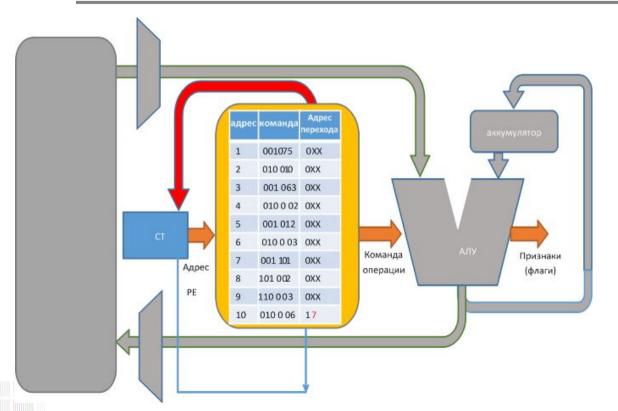
SV #6

ЛИНЕЙНАЯ ПРОГРАММА

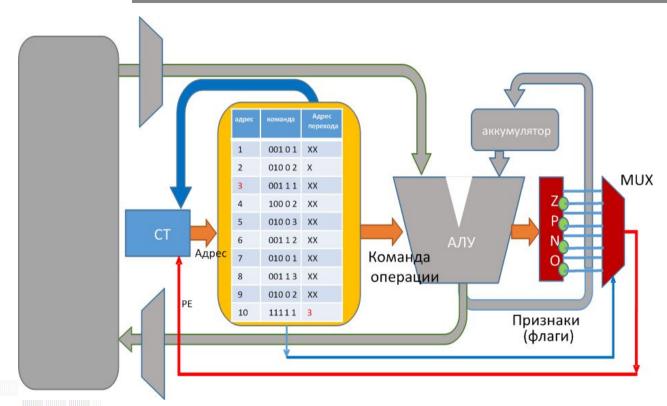
Структура операционного блока



Условные переходы позволяют выполнить ветвление алгоритма в зависимости от результатов промежуточных расчётов.


Безусловные переходы позволяют организовывать циклы: многократное повторение выполнения одинаковых операций.

Циклы можно так же организовать с применением условных переходов.



Мнемоника	код	Условное название
JMP	111 0 1 [адрес]	Безусловный переход
JZ	001 <mark>1</mark> 1 [адрес]	Условный переход по нулевому признаку результата
JNZ	001 <mark>2</mark> 1 [адрес]	Условный переход по ненулевому признаку результата
JP	001 <mark>3</mark> 1 [адрес]	Условный переход по положительному признаку результата
JNP	001 <mark>4</mark> 1 [адрес]	Условный переход по неположительному признаку результата
JNN	001 <mark>5</mark> 1 [адрес]	Условный переход по отрицательному признаку результата
JO	001 6 1 [адрес]	Условный переход по нечётному признаку результата
JNO	001 <mark>7</mark> 1 [адрес]	Условный переход по чётному признаку результата

