
МГТУ ИМ. Н.Э. БАУМАНА

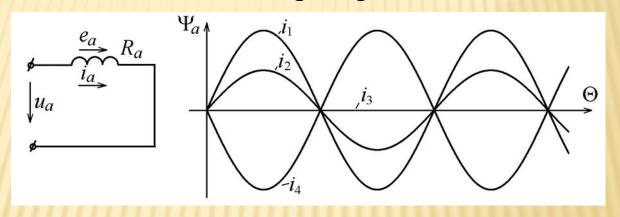
КАФ ФН-7

ОСНОВЫ ЭЛЕКТРОПРИВОДА

ЛЕКЦИЯ 3-4 ПРОФ. КРАСОВСКИЙ АБ

 1. Преобразование энергии связано с вращающимися магнитными полями

Принцип образования вращающегося магнитного поля неподвижными в пространстве обмотками

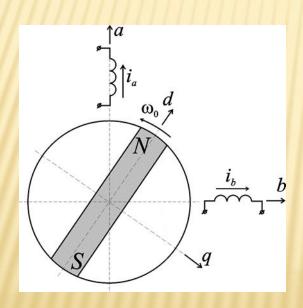

$$i_a = I_m \sin \omega_0 t$$
 $i_b = I_m \cos \omega_0 t$
 $F_a = F_m \sin \omega_0 t$ $F_b = F_m \cos \omega_0 t$,

$$F_{\Sigma} = \sqrt{F_a^2 + F_b^2} = F_m$$

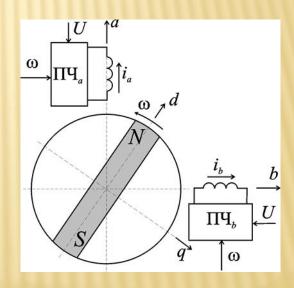
$$tg\gamma = \frac{F_a}{F_b} = tg\omega_0 t$$

2

2. Для обеспечения непрерывного преобразования энергии необходимо, чтобы поле хотя бы одной из обмоток периодически изменялось в пространстве.

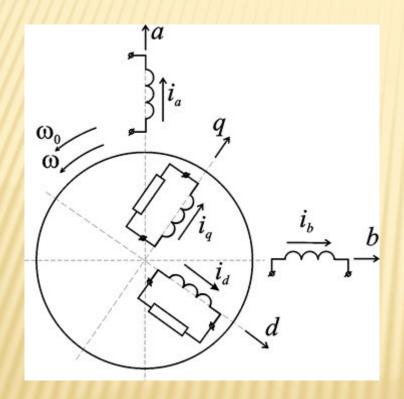


$$u_{a} = -e_{a} + i_{a}R_{a}$$


$$-e_{a} = \frac{d\Psi_{a}}{di_{a}}\frac{di_{a}}{dt} + \frac{d\Psi_{a}}{d\Theta}\frac{d\Theta}{dt} = \frac{d\Psi_{a}}{di_{a}}\frac{di_{a}}{dt} + \frac{d\Psi_{a}}{d\Theta}\omega$$

3. Однонаправленный момент создают только взаимно неподвижные поля

Вариант 1. Ротор вращается со скоростью вращения поля статора — синхронные машины

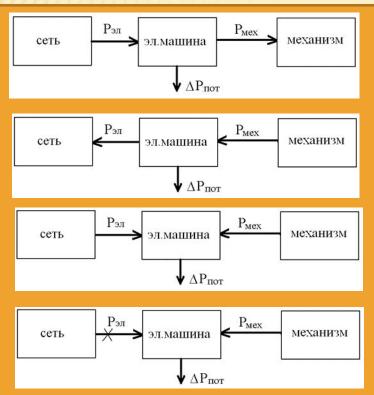


Пояснения к принципу действия синхронной машины

Пояснения к принципу действия машины постоянного тока.

Вариант 2. Скорость вращения ротора не равна, например, меньше скорости вращения поля статора

Пояснения к принципу действия асинхронной машины


Для асинхронных машин вводится понятие скольжения

$$s = \frac{\omega_0 - \omega}{\omega_0}$$

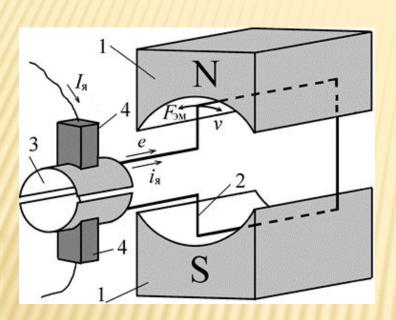
Относительная величина, определяемая как скорость вращения ротора относительно скорости вращения поля статора в долях скорости вращения поля статора.

4. Процесс электромеханического преобразования энергии в любой электрической машине обратим (любая электрическая машина может работать как двигателем, так и генератором).

Генераторные режимы работы электрических машин в электроприводе используют, как правило, с целью преобразования излишков механической энергии в электрическую энергию в тормозных режимах для увеличения темпа снижения скорости или торможения электрических машин и приводимых в движение механизмов.

Энергетические диаграммы электрической машины в двигательном и тормозных режимах работы (в режиме рекуперации; в режиме противовключения и (г) – в режиме динамического торможения.

Различают три тормозных режима работы, отличающихся направлениями потоков мощности: рекуперативный, противовключения и динамического торможения, Некоторые машины могут работать во всех выделенных режимах, для других некоторые режимы физически не реализуемы.


В асинхронной машине ротор, как и статор имеют распределенную в пространстве многофазную обмотку, питаемую многофазным переменным током.

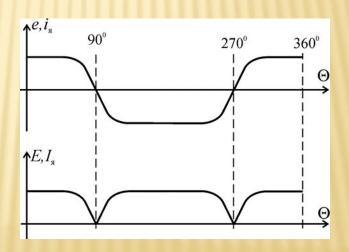
Поскольку поле статора перемещается относительно ротора, электрическая энергия в ротор передается электромагнитным путем (как в трансформаторе). В обычной асинхронной машине ротор не получает питания извне!

В частном случае, с целью дополнительного расширения функциональных возможностей машины ее роторные обмотки могут получать питание от отдельного регулируемого многофазного источника переменного тока (преобразователя частоты). Такие электрические машины получили название машины двойного питания.

Принцип действия основных типов электрических машин

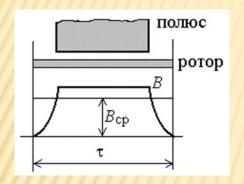
 Электрические машины вращательного типа состоят из двух основных частей - статора и ротора, разделенных воздушным зазором. Ротор вращается, статор неподвижен. Обычно и статор и ротор изготовлены из листов электротехнической стали с высоким удельным сопротивлением (например, из кремнистой стали). Обмотка называется статорной или роторной в зависимости от того, на какой части двигателя она находится.

Простейшая модель машины постоянного тока


Режим генератора

Якорь приводится во вращение внешним источником механической мощности.

В нем наводится ЭДС движения е.


Ее направление может быть определено по правилу правой руки.

ЭДС верхнего и нижнего проводников витка направлены согласно, поэтому e = 2Blv

Изменение тока и ЭДС простейшей машины в функции углового положения витка

Если виток замкнуть через коллектор и внешнюю цепь (за щетками) на нагрузку в виде активного сопротивления R, то в нем потечет переменный ток iя, по форме совпадающий с ЭДС е. Во внешней же цепи ток Ія не изменяет направления из-за действия коллектора, так как при повороте якоря и коллектора на 180 град. и изменении направления ЭДС происходит смена пластин под щетками. Под верхней щеткой всегда находится коллекторная пластина, соединенная с проводником, расположенным под северным полюсом, а под нижней – с южным. В генераторе коллектор является механическим выпрямителем – преобразует переменный ток обмотки якоря в постоянный ток во внешней цепи.

тос Если индукцию B в пределах полюсного деления заменить есротор средним значением Bср

$$E = 2B_{cp}lv = 2\frac{\Phi}{\pi D/2}l\omega \frac{D}{2} = k\Phi\omega,$$

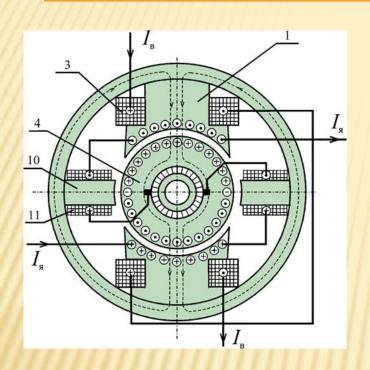
На каждый из проводников с током, находящихся в магнитном поле, в соответствии с законом Ампера действует сила $F_{\rm ЭМ}$, направление которой определяется по правилу левой руки

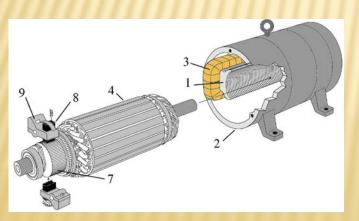
$$F_{_{\rm 9M}} = B_{\rm cp} l I_{_{\rm 9}}$$

Эти силы создают электромагнитный момент

$$M = 2B_{\rm cp}l\frac{D}{2}I_{\rm g}$$

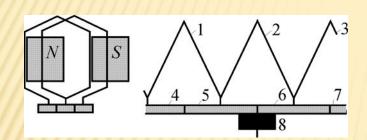
$$M = 2 \frac{\Phi}{\pi D/2} l \frac{D}{2} I_{s} = \frac{2}{\pi} \Phi I_{s} = k \Phi I_{s}$$

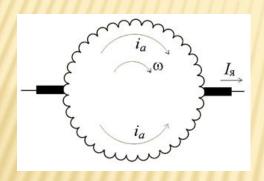

Режим двигателя


К якорю через коллектор подводится постоянный ток от внешнего источника электрической энергии. На якорь действуют электромагнитные силы F и возникает момент M. Однако направление момента теперь совпадает с направлением вращения и он является движущим.

В режиме двигателя коллектор преобразует постоянный ток, потребляемый из сети, в переменный ток в обмотке якоря, т.е. работает механическим инвертором.

Для перехода МПТ из генераторного режима в режим двигателя и обратно при неизменном расположении щеток необходимо изменить направление тока в якоре.


Особенности конструкции и работы реальных машин постоянного тока



Основной магнитный поток в МПТ создается главными полюсами 1. На них располагается обмотка возбуждения 3, по которой протекает ток возбуждения Ів. Для равномерного распределения потока в воздушном зазоре машины главные полюса имеют полюсные наконечники специальной формы. Якорь 4 набирается из листов электротехнической стали и крепится на валу. На внешней поверхности он имеет пазы, в которые укладывается якорная обмотка. Активные части каждой секции располагаются в двух пазах под разными полюсами. Одну сторону секции укладывают в верхнем слое паза, а другую - в нижнем.

Особенности конструкции и работы реальных машин постоянного тока

Принцип выполнения якорной обмотки

Выводы якорной обмотки присоединяются к коллекторным пластинам.

Секции обмотки через коллекторные пластины соединяются последовательно, образуя кольцо. Якорную обмотку можно представить в виде замкнутой спирали, по поверхности которой скользят щетки. Щетки делят последовательно соединенные секции обмотки на параллельные ветви. При перемещении пластин коллектора относительно щеток секции поочередно переходят из одной параллельной ветви в другую. Этот процесс, называют коммутацией. Он приводит к поочередному изменению направления тока в секциях.

СПАСИБО ЗА ВНИМАНИЕ!