
Overview of the .NET

Overview

■ Compilation and interpretation
■ Virtual machines
■ Simple C# program
■ CIL, ildasm util
■ CLR
■ .NET Framework
■ JIT, NGEN
■ CLS
■ .NET 6
■ Compare C ++, C # (.NET) method call performance

2

Compilation (Ahead-of-Time) and
interpretation
■ A program written in a high level language can run in two

ways
◻ Compiled into a program in the native machine language and

then run on the target machine.
◻ Directly interpreted and the execution is simulated within an

interpreter.

3

Compilation and interpretation

■ How is a C++ program executed on linprog?
◻ cl try.cpp 🡺 compiling the program into machine code
◻ Try.exe 🡺 running the machine code

■ How is a JavaScript program executed?
◻ cscript.exe try.js
◻ The program just runs, no compilation phase
◻ The program cscript is the software environment that

understands JavaScript language. The program try.js is executed
(interpreted) within the environment.

■ In general, which approach is more efficient?

4

Compilation and interpretation

■ In general, which approach is more efficient?
◻ A[i][j] = 1;

5

Compilation:
mov eax, DWORD PTR _i$[ebp]

imul eax, 20

lea ecx, DWORD PTR _A$[ebp+eax]

mov edx, DWORD PTR _j$[ebp]

mov DWORD PTR [ecx+edx*4], 1

Interpretation:
• create a software environment that

understand the language
• put 1 in the array entry A[i][j];

Compilation and interpretation

■ In general, which approach is more efficient?
◻ A[i][j] = 1;

6

Compilation:
mov eax, DWORD PTR _i$[ebp]

imul eax, 20

lea ecx, DWORD PTR _A$[ebp+eax]

mov edx, DWORD PTR _j$[ebp]

mov DWORD PTR [ecx+edx*4], 1

Interpretation:
• create a software environment that

understand the language
• put 1 in the array entry A[i][j];

• For the machine to put 1 in the array
entry A[i][j], that code sequence still
needs to be executed.

• Most interpreter does a little more than
the barebone “real work.”

• Compilation is always more efficient!!
• Interpretation provides more functionality. E.g. for debugging
One can modify the value of a variable during execution.

Compilers versus Interpreters

■ Compilers “try to be as smart as possible” to fix decisions that
can be taken at compile time to avoid to generate code that
makes this decision at run time
◻ Type checking at compile time vs. runtime
◻ Static allocation
◻ Static linking
◻ Code optimization

■ Compilation leads to better performance in general
◻ Allocation of variables without variable lookup at run time
◻ Aggressive code optimization to exploit hardware features

7

Compilers versus Interpreters

■ Benefit of interpretation?
◻ Interpretation facilitates interactive debugging and testing

■ Interpretation leads to better diagnostics of a programming problem
■ Procedures can be invoked from command line by a user
■ Variable values can be inspected and modified by a user

◻ Some programming languages cannot be purely compiled into machine code
alone

■ Some languages allow programs to rewrite/add code to the code base dynamically
■ Some languages allow programs to translate data to code for execution

(interpretation)
■ JavaScript Eval() function

var x = 10;
var y = 20;
var a = eval("x * y") + " ";
var b = eval("2 + 2") + " ";
var c = eval("x + 17") + " ";
var res = a + b + c;
The result of res will be: "200 4 27 "

8

Virtual Machines
 (for programming language)
■ A virtual machine executes an instruction stream in

software
■ Adopted by Pascal, Java, Smalltalk-80, C#, functional

and logic languages, and some scripting languages
◻ Pascal compilers generate P-code that can be interpreted or

compiled into object code
◻ Java compilers generate bytecode that is interpreted by the Java

virtual machine (JVM)
◻ C#, VB.NET compilers generate CIL (Common Intermediate

Language) that is interpreted by the CLR virtual machine
◻ The CLR may translate CIL into machine code by just-in-time

(JIT) compilation

9

Compilation and Execution on
Virtual Machines
■ Compiler generates intermediate program
■ Virtual machine interprets the intermediate program

10

Virtual
Machine

Compiler
Source

Program
Intermediate

Program

Input Output

Run on VMCompile on X

Run on X, Y, Z, …

Two Steps Compilation Process

■ Compilation is done in two steps:
◻ At compile time: compile each language (C#,VB.Net, C++, etc) to

Common Intermediate Language (CIL)
◻ At runtime: Common Language Runtime (CLR) uses a Just In

Time (JIT) compiler to compile the CIL code to the native code
for the device used

Run
Time

Compile
Time

Simple C# program
namespace SimpleConsoleApplication
{
 class Program
 {
 static void Main(string[] args)
 {
 int init =10;
 int rate =5;
 int pos = init + rate * 60;
 System.Console.WriteLine(pos);
 }
 }
}

12

C# -> CIL Using ildasm
.method private hidebysig static void Main(string[] args) cil managed
{ .entrypoint
 .maxstack 3
 .locals init ([0] int32 'init', [1] int32 rate, [2] int32 pos)
 ldc.i4.s 10
 stloc.0
 ldc.i4.5
 stloc.1
 ldloc.0
 ldloc.1
 ldc.i4.s 60
 mul
 add
 stloc.2
 ldloc.2
 call void [mscorlib]System.Console::WriteLine(int32)
 ret }

13

14

Local Variables
0 (init) int 0
1 (rate) int 0
2 (pos) int 0

Stack
unused
unused
unused

 .maxstack 3
 .locals init ([0] int32 'init', [1] int32 rate, [2] int32 pos)

ldc.i4.s 10

Local Variables
0 (init) int 0
1 (rate) int 0
2 (pos) int 0

Stack
unused
unused
10 int

15

Local Variables
0 (init) int 0
1 (rate) int 0
2 (pos) int 0

Stack
unused
unused
10 int

 stloc.0

Local Variables
0 (init) int 10
1 (rate) int 0
2 (pos) int 0

Stack
unused
unused
unused

16

Local Variables
0 (init) int 10
1 (rate) int 0
2 (pos) int 0

Stack
unused
unused
unused

 ldc.i4.5

Local Variables
0 (init) int 10
1 (rate) int 0
2 (pos) int 0

Stack
unused
unused
5 int

17

Local Variables
0 (init) int 10
1 (rate) int 0
2 (pos) int 0

Stack
unused
unused
5 int

 stloc.1

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 0

Stack
unused
unused
unused

18

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 0

Stack
unused
unused
unused

 ldloc.0
 ldloc.1
.1Local Variables

0 (init) int 10
1 (rate) int 5
2 (pos) int 0

Stack
unused
5 Int
10 int

19

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 0

Stack
unused
5 int
10 int

 ldc.i4.s 60

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 0

Stack
60 int
5 int
10 int

20

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 0

Stack
60 int
5 int
10 int

 mul

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 0

Stack
unused
300 int
10 int

21

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 0

Stack
unused
300 int
10 int

 add

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 0

Stack
unused
unused
310 int

22

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 0

Stack
unused
unused
310 int

 stloc.2

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 310

Stack
unused
unused
unused

23

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 310

Stack
unused
unused
unused

 ldloc.2

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 310

Stack
unused
unused
310 int

24

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 310

Stack
unused
unused
310 int

call void mscorlib]System.Console::WriteLine(int32)
ret

Local Variables
0 (init) int 10
1 (rate) int 5
2 (pos) int 310

Stack
unused
unused
unused

Common Intermediate
Language (CIL)

■ Much like the native languages of devices.
■ CIL was originally known as Microsoft Intermediate

Language (MSIL).
■ CIL is a CPU- and platform-independent instruction set.
■ It can be executed in any environment supporting the

.NET framework

Common Language Runtime
(CLR)
■ The Common Language Runtime (CLR) manages the

execution of code.
■ CLR uses Just-In-Time (JIT) compiler to compile the CIL

code to the native code for device used.
■ Through the runtime compilation process CIL code is

verified for safety during runtime, providing better
security and reliability than natively compiled binaries.

■ Native image generator compilation (NGEN) can be used
to produces a native binary image for the a specific
environment. What is the point?

Compilation Process
So if we have 3 programming languages and 3 devices,
how many compilers do we need?

CLR

VB
Source
code VB

Compiler

C++C#

CIL CILCIL

Operating System Services

Common Language Runtime JIT Compiler

C#
Compiler

C++
Compiler

Native
code

Manage
d

Code

Manage
d

Code

Manage
d

Code

Unmanage
d

Code
CLR Services

Executes
under the
management
of a virtual
machine.

Platform and Language
Independent
■ What we have described so far will lead us to Platform

independent environment. How?
■ Can we use compiled classes written in X language in a

program written in Y language?
■ VB.NET + C#.NET code

Language interoperability

■ All .NET languages can interoperate

C# calling
VB.NET

class Hello
{
 static void Main()
 {
 System.Console.WriteLine(Greeting.Message());
 }
}

Class Greeting
 Shared Function Message() As String
 Return "hello"
 End Function
End Class

CLR

Execution engine

■ Common Language Runtime (CLR) is the execution
engine
◻ loads IL
◻ compiles IL
◻ executes resulting machine code

IL

Runtim
e

compil
er

Execut
emachine code

Cache

JIT runtime compile
■ CIL is compiled into machine code at runtime by the

CLR
◻ compiles methods as needed
◻ called just in time (JIT) compile

■ JIT compilation model:
◻ first time method is called the IL is compiled and optimized
◻ compiled machine code is cached in transient memory
◻ cached copy used for subsequent calls

CIL code
 F()
 G()
 H()

JIT
runtim

e
compil

er

Execut
e

machine code for
F()

NGEN install time compile

■ Can compile CIL into machine code when app installed
◻ use native image generator ngen.exe
◻ can speed startup time since code pre-compiled
◻ but cannot do as many optimizations
◻ original IL must still be available for type information

CLR

IL ngen Execut
e

nativ
e

image
cache

machine code

C#

VB.NET

Language variability
Not all .NET languages have exactly the same
capabilities

differ in small but important ways
class Hello
{
 static void Main()
 {
 int i;
 uint u;
 }
}

Class Greeting
 Shared Sub Main()
 Dim i as Integer
 End Sub
End Class

signed integer
unsigned integer

signed integer only

Common Language
Specification
■ Common Language Specification (CLS) defines type

subset
◻ required to be supported by all .NET languages
◻ limiting code to CLS maximizes language interoperability
◻ code limited to CLS called CLS compliant

public class Calculator
{
 public uint Add(uint a, uint b)
 {
 return a + b;
 }
}

not CLS compliant
to use uint in public
interface of public class

CLS,CLR/CTS & Languages

35

Languages offer a subset of the CLR/CTS and a superset of the CLS
(but not necessarily the same superset).

37

38

Method call performance

Let's compare C ++, C # (.NET) method call performance
■ C++ Function
■ C++ Virtual Function
■ C# (.NET) Method

39

40

Pointer to object(level 1)

41

Pointer to vtable(stored in every
object – level 2)

42

Deitel & Deitel, Fig
24.24

Index into vtable to access method(level 3)

Calling a method for the first
time

Managed EXE

Shared Sub Main()
 Console.WriteLine(“Paul”)
 Console.WriteLine(“Cross”)
End Sub

 Console

 Shared Sub WriteLine()

 Shared Sub WriteLine(String)

 (remaining members)

Jitter

Jitter

…

MSCorEE.dll

Function Jitter
1. In the assembly that implements the type (Console), look up the method (WriteLine)

being called in the metadata.
2. From the metadata, get the IL for this method.
3. Allocate a block of memory.
4. Compile the IL into native code; save the code in the memory allocated in step 3.
5. Modify the method’s entry in the Type’s table so that it now points to the memory block

allocated in step 3.
6. Jump to the native code contained inside the memory block.

End Function

Native code

Performance Impact

Call Number C++ C++ Virtual .NET

1 X X + 2 pointers X+ 2 pointers+
JIT compile

2,3….. X X + 2 pointers X+ 2 pointers

