Overview of the .NET

" A
Overview

s Compilation and interpretation

= Virtual machines

s Simple C# program

a CIL, ildasm util

» CLR

= .NET Framework

= JIT, NGEN

x CLS

= .NETOG

s Compare C ++, C # (.NET) method call performance

" JE
Compilation (Ahead-of-Time) and
interpretation

= A program written in a high level language can run in two
ways
Compiled into a program in the native machine language and
then run on the target machine.

Directly interpreted and the execution is simulated within an
interpreter.

Compilation and interpretation

= How is a C++ program executed on linprog?
cl try.cop [0 compiling the program into machine code
Try.exe L[] running the machine code

x How is a JavaScript program executed?
cscript.exe try.js
The program just runs, no compilation phase

The program cscript is the software environment that
understands JavaScript language. The program try.js is executed
(interpreted) within the environment.

= In general, which approach is more efficient?

" JE—
Compilation and interpretation

= In general, which approach is more efficient?

AlI0l = 1;
Compilation: Interpretation:
mov eax, DWORD PTR _i$[ebp] e create a software environment that

understand the language

1mul eax, 20
put 1 in the array entry A[i][j];

lea ecx, DWORD PTR _A$[ebp+eax]
mov edx, DWORD PTR _j$[ebp]
mov DWORD PTR [ecx+edx*4], 1

" JE—
Compilation and interpretation

= In general, which approach is more efficient?

Al = 1;
. Interpretatlon
Compllathn: create a software environment that
mov eax, DWORD PTR _i$[ebp] understand the language

imul eax. 20 put 1 in the array entry A[1][j];

lea ecx, DWORD PTR _A$[ebp+eax] For the machine to put 1 in the array

mov edx, DWORD PTR _j$[ebp] entry A[i][j], that code sequence still
mov DWORD PTR [ecx+edx*4], 1 needs to be executed.

Most interpreter does a little more than
the barebone “real work.”

* Compilation 1s always more efficient!!
* Interpretation provides more functionality. E.g. for debugging
One can modify the value of a variable during execution.

" JE
Compilers versus Interpreters

x Compilers “try to be as smart as possible” to fix decisions that
can be taken at compile time to avoid to generate code that
makes this decision at run time

Type checking at compile time vs. runtime
Static allocation

Static linking

Code optimization

= Compilation leads to better performance in general
Allocation of variables without variable lookup at run time
Aggressive code optimization to exploit hardware features

" JE
Compilers versus Interpreters

= Benefit of interpretation?

Interpretation facilitates interactive debugging and testing
= Interpretation leads to better diagnostics of a programming problem
= Procedures can be invoked from command line by a user
= Variable values can be inspected and modified by a user
Some programming languages cannot be purely compiled into machine code
alone
= Some languages allow programs to rewrite/add code to the code base dynamically
» Some languages allow programs to translate data to code for execution
(interpretation)
= JavaScript Eval() function
var x = 10;
vary = 20;
vara=eval("x *y")+"";
varb=eval("2 +2")+"";
varc=eval("x + 17")+" ";

varres=a+b+c;
The result of res will be: "2004 27 "

" JE
Virtual Machines
(for programming language)

s A virtual machine executes an instruction stream in
software

= Adopted by Pascal, Java, Smalltalk-80, C#, functional
and logic languages, and some scripting languages

Pascal compilers generate P-code that can be interpreted or
compiled into object code

Java compilers generate bytecode that is interpreted by the Java
virtual machine (JVM)

C#, VB.NET compilers generate CIL (Common Intermediate
Language) that is interpreted by the CLR virtual machine

The CLR may translate CIL into machine code by just-in-time
(JIT) compilation

"
Compilation and Execution on
Virtual Machines

s Compiler generates intermediate program
= Virtual machine interprets the intermediate program

Source Compiler Intermediate
Program P Program

Compile on X Run on VM

Input VA Output
p Machine p

Runon X, Y,

10

" J—
Two Steps Compilation Process

s Compilation is done in two steps:

At compile time: compile each language (C#,VB.Net, C++, etc) to
Common Intermediate Language (CIL)

At runtime: Common Language Runtime (CLR) uses a Just In
Time (JIT) compiler to compile the CIL code to the native code
for the device used

Language 1 Machine 1

Language 2 » CIL > Machine 2

Language 3 Machine 3
Compile Run

Time Time

Simple C# program

namespace SimpleConsoleApplication

{

class Program

{

static void Main(string[] args)
{
Int init =10;
int rate =5;
int pos = init + rate * 60;
System.Console.WriteLine(pos);

12

"
C# -> CIL Using ildasm

.method private hidebysig static void Main(string[] args) cil managed
{ .entrypoint

.maxstack 3

Jocals init ([0] int32 "init', [1] int32 rate, [2] int32 pos)

|dc.i4.s 10

stloc.0

|dc.i4.5

stloc.1

|dloc.0

|dloc.1

|dc.i4.s 60

mul

add

stloc.2

|dloc.2

call void [mscorlib]System.Console::WriteLine(int32)

ret }

13

.maxstack 3
Jocals init ([0] int32 'init’, [1] Int32 rate, [2] int32 pos)

Local Variables m

0 (init) int unused
1 (rate) int 0 unused
2 (pos) int 0 unused
Idc.i4.s 10
Local Variables m
0 (init) int 0 unused
1 (rate) int 0 unused

2 (pos) int 0 10 int

14

Local Variables m

0 (init) int unused

1 (rate) int 0 unused

2 (pos) int 0 10 int
stloc.0

Local Variables m

0 (init) int 10 unused
1 (rate) int 0 unused
2 (pos) int 0 unused

15

Local Variables m

0 (init) int unused
1 (rate) int 0 unused
2 (pos) int 0 unused

dc.i4.5
" stack

0 (init) int 10 unused
1 (rate) int 0 unused
2 (pos) int 0 S int

16

Local Variables m

0 (init) int unused

1 (rate) int 0 unused

2 (pos) int 0 5 int
stloc.1

Local Variables m

0 (init) int 10 unused
1 (rate) int 3) unused
2 (pos) int 0 unused

17

Local Variables m

0 (init) int unused
1 (rate) int 3 unused
2 (pos) int 0 unused

ldloc.0

|dloc.1
| Stack

0 (init) int 10 unused
1 (rate) int 5 S Int
2 (pos) int 0 10 int

18

Local Variables m

0 (init) int unused
1 (rate) int 3 S int
2 (pos) int 0 10 int

Idc.i4.s 60

Local Variables m

0 (init) int 10 60 int
1 (rate) int 3 S int
2 (pos) int 0 10 int

19

Local Variables m
60 int

0 (init) int

1 (rate) int 3 S int

2 (pos) int 0 10 int
mul

Local Variables m

0 (init) int 10 unused
1 (rate) int 5 300 int
2 (pos) int 0 10 int

20

Local Variables m

0 (init) int unused
1 (rate) int 3 300 int
2 (pos) int 0 10 int

add

Local Variables m

0 (init) int 10 unused
1 (rate) int 3) unused
2 (pos) int 0 310 int

21

Local Variables

0 (init)
1 (rate)
2 (pos)

int 10

int)

int 0
stloc.2

Local Variables

0 (init)
1 (rate)
2 (pos)

int
int

int

10
5
310

unused
unused
310 int

unused
unused
unused

22

Local Variables

0 (init)
1 (rate)
2 (pos)

int
int
int

|dloc.2

10
5
310

Local Variables

0 (init)
1 (rate)
2 (pos)

int
int

int

10
5
310

unused
unused
unused

unused
unused
310 int

23

Local Variables m

0 (init) int unused
1 (rate) int 5 unused
2 (pos) int 310 310 int

call void mscorlib]System.Console::WriteLine(int32)
ret

Local Variables m

0 (init) int 10 unused
1 (rate) int 3) unused
2 (pos) int 310 unused

24

" A
Common Intermediate
Language (CIL)

= Much like the native languages of devices.

= CIL was originally known as Microsoft Intermediate
Language (MSIL).

s CIL is a CPU- and platform-independent instruction set.

s It can be executed in any environment supporting the
NET framework

"
Common Language Runtime
(CLR)

= he Common Language Runtime (CLR) manages the
execution of code.

s CLR uses Just-In-Time (JIT) compiler to compile the CIL
code to the native code for device used.

= Through the runtime compilation process CIL code is
verified for safety during runtime, providing better
security and reliability than natively compiled binaries.

= Native image generator compilation (NGEN) can be used
to produces a native binary image for the a specific
environment. What is the point?

Compilation Process

So if we have 3 programming languages and 3 devices,
how many compilers do we need?

Executes

Source under the
code management
: 0 . of a virtual
b h b machine.
Common Language Runtime JIT Compiler

Y ¥ Y !
A o s R s |

CLR Services

Operating System Services

" JE
Platform and Language
Independent

= What we have described so far will lead us to Platform
independent environment. How?

= Can we use compiled classes written in X language in a
program written in Y language”?

s VB.NET + CE.NET code

Language interoperability

= All NET languages can interoperate

C# calling
VB.NET

class Hello

{

static void Main()

{

System.Console.WriteLine (

}
}

Class
Shared Function As String
Return "hello"
End Function
End Class

" JE—
Execution engine

s Common Language Runtime (CLR) is the execution
engine
loads IL
compiles IL

executes resulting machine code
CLR

4 N

U1 i e

JIT runtime compile

s CIL is compiled into machine code at runtime by the
CLR

compiles methods as needed
called just in time (JIT) compile

= JIT compilation model:
first time method is called the IL is compiled and optimized
compiled machine code is cached in transient memory
cached copy used for subsequent calls

/ Cache \
machine code fD
F(Q)

|

CIL code g
G() -~
AV

N /

" J——
NGEN install time compile

s Can compile CIL into machine code when app installed
use native image generator ngen . exe
can speed startup time since code pre-compiled
but cannot do as many optimizations
original IL must still be available for type information

IL “ machine code

Language variability
Not all .NET languages have exactly the same

capabilities
differ in small but important ways C#
class Hello
{
static void Main()
{
signed integer—— int i;
unsigned integer—— \ uint u;
}
VB.NET
Class Greeting
Shared Sub Main ()
signed integer only——— Dim i as Integer
End Sub
End Class

" JEE—
Common Language
Specification

= Common Language Specification (CLS) defines type
subset
required to be supported by all .NET languages
limiting code to CLS maximizes language interoperability
code limited to CLS called CLS compliant

public class Calculator

not CLS compliant {
to use uint in public —— public uint Add(uint a, uint b)
interface of public class {

return a + b;

}
}

" JE—
CLS,CLR/CTS & Languages

CLR/CTS

Languages offer a subset of the CLR/CTS and a superset of the CLS
(but not necessarily the same superset).

35

The big picture of .NET Platforms

NET Framework 32| NET Core 2N A S

Models

C
2
-~

T
=
-

Q.
- 4

Base Class Library CoreFX

Base
Libraries

Common Runtime _
Components Compilers

ﬁ# Next gen JIT (RyuliT) I Languages mnavation

SIMD NET Compiler Piatform

DOT
NEXT

Xamarin IR we

Mono BCL

NuGet packages

NET Core 1.0 Libraries
NET Framework 46 Libranes

" S
NET — A unified platform
E D @;ﬁ:} TOOLS

2.
DESKTOP MOBILE

A

WPF Xamarin MLNET VISUAL STUDIO

Windows Forms NET for
UWP Apache Spark

&)

.NET STANDARD
VISUAL STUDIO FOR MAC

.NET 5

-]

VISUAL STUDIO CODE

INFRASTRUCTURE

37

.NET Schedule
July 2019 Sept 2019 Nov 2019 Nov 2020 Nov 2021 Nov 2022 Nov 2023
NET Core 3.0 .NET Core 3.0 .NET Core 3.1 NET 5.0 .NET 6.0 .NET 7.0 .NET 8.0
RC GA LTS GA LTS GA LTS

NET Core 3.0 release in September

NET Core 3.1 = Long Term Support (LTS)

NET 5.0 release in November 2020

Major releases every year, LTS for even numbered releases
- Predictable schedule, minor releases if needed

38

"
Method call performance

Let's compare C ++, C # (.NET) method call performance
s C++ Function

s C++ Virtual Function

s C# (.NET) Method

39

. _ (abstract class)
Employee vtable

earnings 0 {0 indicates pure virtual function)

print

first last 4+—=
ssh:
salariedEmployee salariedEnmp loyee
vtable
B T EEEE—
earnings
weeklySalary #—— =
i X John Smith vector < Employee ¥ »
: 111-11-1111
_ rint employees(4);
salaried 4'3—0 $800. 00 oloyees i)
emp loyee : .
[0 &salaried-
Emp loyee
HourlyEmployee 3 hourlyEmployee (1] &hourly- - B
vtable Erp loyee
5
wage * earnings -
hours .. Karen Price &cgm}ssmn_
print 4 222-22-2222 e
hourly -—————— $16.75
emp loyee: ... 40 &bhasePlus-
S Commission-
Emrp loyee
e commi ssionEmployee
Coni ssionEmployee
vtable
- »
earnings
grosssales —— @ e
“ commssionRate e 333-33-3333
commission -1D—o $10,000,00
emp loyee:06
.. baseP lusCommissionEmp loyee baseClassPtr
BasePlusCommi ssionEmployee R
viable i
basesalary + earnings f s
(grosssales ST
* commissionRate) S Aia 4 Aads
base- H———® $5,000.,00
salaried .04
comm ssion $300.00

ermp loyee :

Flow of Yirtual Function Call baseClassPtr->print()
When baseCl assPtr Points to Object hourlyEmployee

pass &hourlyEmployee get to HourlyEmpTloyee execute print for
3 5
to baseClassPtr vtable HourlyEmployee
get to hourl yEmployee 4 | getto print pointer

object in vtable

il
Wéb/e

0 indicates pure virtual function)

alariedEmp loyee

John Smith

111-11-1111
$800. 00

hourlyEmployee

earnings
I@”V§[‘f‘
; int
salaried ‘4—4
emp loyee: ...
HourlyEmployee
vtable
wage ¥ earnings
hours ...
print 4
hourly -——————
emp loyee: ...
S

Coni ssionEmployee
vtable
earnings
grosssales ———
% commssionRate

B

L. print
commmiSsion

emp loyee: ...

BasePlusCommi ssionEmployee
viable

Karen Price
222-22-2222
$16.75
40

commissionEmployee

Sue Jones
333-33-3333
$10,000,00

.06

baseP lusCommissionEmployee

baseSalary + earnings
(grossSales
¥ commissionRate)

print
base-

salaried
comimi 51 on
emp loyee: ...

Bob Lewis
444-44-4444
$5,000.,00
.04
$300.00

vector < Employee ¥ »

enployees(4);

&salaried-
Emp loyee

&hourly-

Emp loyee =y

&COMMISSion-
Etrp loyee

&basePlus-
Commission-
Emrp loyee

baseClassPtr

Flow of Yirtual Function Call baseClassPtr->print()
When baseCl assPtr Points to Object hourlyEmployee

pass &hourlyEmployee get to HourlyEmpTloyee 5 execute print for
to baseClassPtr vtable HourlyEmployee
get to hourlyEmployee 4 | getto print pointer

object in vtable

(abstract class)
Employee vtable

earnings 0

print

{0 indicates pure virtual function)

first last #4———=
RS
salariedEmployee salariedenp loyee
utable
earnings
weeklySalary #—— =
i 2 John Smith wvector < Employee * »
: 111-11-1111
A rint employees(4);
salaried E $800,00 tiployeesti Ji
emp loyee:
[0] &salaried-
Emp loyee
HourlyEmployee hourlyEmployee (1] &hourly- — 5
vtable Emp loyee
. 5
earnings i
3 Karen Price &cgm‘%sswn—
4) 222-22-2222 npioyee
y $16.75
. 40 &basePlus-
g Commission-
4 Emp loyee
e conmi ssionEmployee
Commmi ssionEmployee
viabie _
earnings
grosssales —— @ SRR e
“ commssionRate e 333.33-3333
commi ssion £ $10,000.00
emp loyee:06
L. basePlusCormmissionEnployee baseClassPtr
BasePlusCommi ssionEmployee

viable

baseSalary +
(grossSales
* commissionRate)

earnings

print
base- w+———®
salaried
comimi 51 on
emp loyee: ...

g

Bob Lewis
444-44-4444
$5,000.,00
.04
$300.00

Flow of Yirtual Function Call baseClassPtr->print()
When baseCl assPtr Points to Object hourlyEmployee

. pass &hourlyEmployee
to baseClassPtr

. getto hourlyEmployee
object

4

execute print for
HourlyEmployee

get to HourlyEmployee 5
vtable

. get to print pointer
in vtable

r the first

Shared Sub Main()
I Console.WriteLine(‘“Paul’) Jitter
Console.WriteLine(‘‘Cross’)

End Sub Shared Sub WriteLine(String)
= Jitter

Function Jitter
In the assembly that implements the type (Console), look up the method (WriteLine)
being called in the metadata.
From the metadata, get the IL for this method.
Allocate a block of memory.
Compile the IL into native code; save the code in the memory allocated in step 3.
Modify the method’s entry in the Type’s table so that it now points to the memory block
allocated in step 3.
. Jump to the native code contained inside the memory block.
End Function

Performance Impact

e I

1 X X + 2 pointers X+ 2 pointers+
JIT compile

2,3..... X X + 2 pointers X+ 2 pointers

