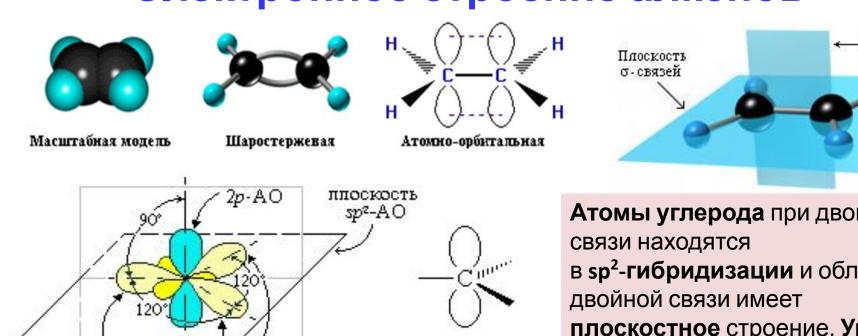

Алкены

Алкены (этиленовые углеводороды, олефины) - непредельные алифатические углеводороды, молекулы которых содержат двойную связь.

Гомологический ряд алкенов

Алкены



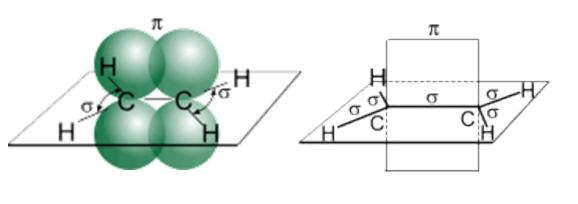
• Алкены (этиленовые углеводороды, олефины) - непредельные алифатические углеводороды, молекулы которых содержат двойную связь.

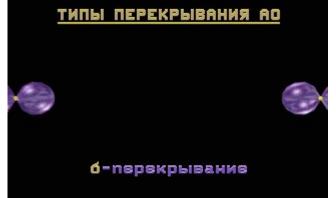
Общая формула ряда алкенов С_пН_{2п}, где n ≥ 2.

• Простейшие представители:

Электронное строение алкенов

2sp2-AO


ппоскость


рисунка

Атомы углерода при двойной в **sp²-гибридизации** и область плоскостное строение. Угол между гибридными валентными электронами на

Плоскость п-связи

ппоскости **120°** Образование двойной связи С=С 2*p-*AO Η Η . $\mathbf{H}_{\mathbf{M}}$ 2sp2-AO

Энергия,

кДж/моль

348

620

Дицна

связи,

0.154

0,133

▼ (сигма) – более прочная связь, образованная гибридными электронами и
расположенная по линии, соединяющей центры атомов. Вторая связь -
Т (пи) –
менее прочная, образована она боковым перекрыванием негибридных рэлектронов и расположена выше и ниже линии, соединяющей центры атомов.

Энергия двойной С=С связи

- $E_{\sigma+\pi}$ (энергия двойной связи) C=C ($\sigma+\pi$) 620 кДж/мс
- E_σ (энергия σ -связи) С-С 348 кДж/моль
- Отсюда E_{π} (энергия π -связи) 272 кДж/моль, т.е. E_{π} на 76 кДж/моль меньше E_{σ} .
- Поэтому для алкенов наиболее характерны реакции, протекающие за счет раскрытия менее прочной π -связи. При этом π -связь (в исходном алкене) преобразуется в σ -связь в продукте реакции. Исходное ненасыщенное соединение превращается в насыщенное без образования других продуктов, т.е. происходит реакция Присоединения.

Повторим алкены: строение

• 1. Что называется длиной связи?

(Длина связи – это расстояние между центрами ядер связываемых атомов в молекуле.)

• 2. Что можно сказать о длине углерод-углеродной связи веществ с одинарной (C–C) и двойной (C=C) связью?

(Длина углерод-углеродной одинарной связи — 0,154 нм двойной связи — 0,133 нм, двойная связь прочнее и короче одинарной.)

- **3.** Сколько σ-связей может возникнуть между атомами? (Одна.)
- **4.** Что можно сказать о прочности т-связи? (Она менее прочная, чем одинарная -σ-связь.)
- **5.** Какая химическая связь образуется между гибридизированными облаками?

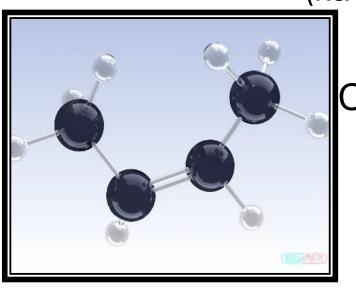
(Сигма.)

• 6. Сколько валентных электронов у атома углерода? (Четыре.)

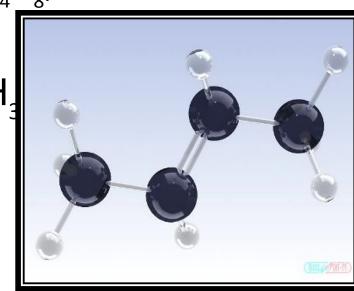
Изомерия алкенов

1 Структурная изомерия алкенов

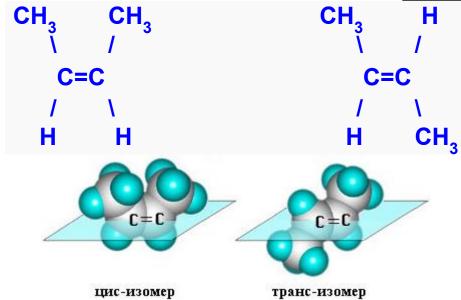
1. Изомерия углеродного скелета (начиная с C₄H₈):


2. Изомерия положения двойной связи (начиная с C_4H_8):

3. Межклассовая изомерия с циклоалканами, начиная с C_3H_6 :


$$CH_2 = CH - CH_3$$
 \longleftarrow $C_3H_6 \longrightarrow$ $CH_2 - CH_2$ \longleftarrow \longleftarrow $CH_2 - CH_2$ \longleftarrow $CH_2 -$

2) Геометрическая (пространственная) цис- транс- изомерия


(начиная с бутена С₄Н₈)

CH₃-CH=CH-CH₃ бутен-2

Цис-изомер (Цис-бутен-2)

Транс-изомер (Транс-бутен-2)

Назовите следующие алкены

a)
$${}^{1}CH_{3} - {}^{2}C = {}^{3}CH - {}^{5}H_{2} - {}^{6}CH - {}^{C}H_{3}$$

CH₃

CH₃

CH₃

6) ${}^{4}CH_{2} - {}^{5}CH_{2} - {}^{6}CH_{3}$
 ${}^{6}CH_{2} - {}^{6}CH_{2} - {}^{6}CH_{3}$
 ${}^{6}CH_{2} - {}^{6}CH_{3} - {}^{6}CH_{3}$
 ${}^{6}CH_{3} - {}^{6}CH_{3} - {}^{6}CH_{3}$

Ответы:

- а) 2,5-диметилгексен-2
- б) цис-изомер-гексен-2
- в) 3-метил-2-этилпентен-1

Физические свойства алкенов

Агрегатное состояние:

С увеличением молекулярной массы соединений температуры кипения и плавления закономерно повышаются.

Химические свойства алкенов

Алкены горят желтоватым пламенем, немного коптят

$$C_2H_4 + 3O_2 = 2CO_2 + 2H_2O$$

<u>Алкены вступают в реакции</u>

- присоединения:

 1) Гидрирование реакции с
- водородом 2) Галогенирование реакции с
- гадогенами 3) Гидратация взаимодействие с водой
- 4) Гидрогалогенирование реакции с галогеноводородами

Химические свойства алкенов

Алкен	Реагент	Продукт	Вид реакции
$-\mathbf{C} = \mathbf{C} - \mathbf{I}$	$+$ $H_2 \longrightarrow \stackrel{Ni}{\longrightarrow}$	$-\overset{!}{\overset{!}{\overset{!}{\overset{!}{\overset{!}{\overset{!}{\overset{!}{\overset{!}$	Гидрирование (восстановление)
$-\mathbf{C} = \mathbf{C} - \mathbf{I}$	+ Br ₂	$-\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}$	Галогенирование (бромирование)
$-\mathbf{C} = \mathbf{C} -$	+ HCl →	$-\overset{!}{\overset{!}{\overset{!}{\overset{!}{\overset{!}{\overset{!}{\overset{!}{\overset{!}$	Гидрогалогенирование (гидрохлорирование)
$-\mathbf{C} = \mathbf{C} -$	$+ H_2O \longrightarrow$	-c-c- н он	Гидратация
n (-C = C-)	жатализатор →	(Полимеризация

Реакции присоединения

• Присоединение водорода:

$$H_2C = CH_2 + H_2 \rightarrow H_3C - CH_3$$

• Присоединение галогенов:

$$H_2C=CH_2+Cl_2 \rightarrow ClH_2C-CH_2Cl$$

• Присоединение галогеноводородов:

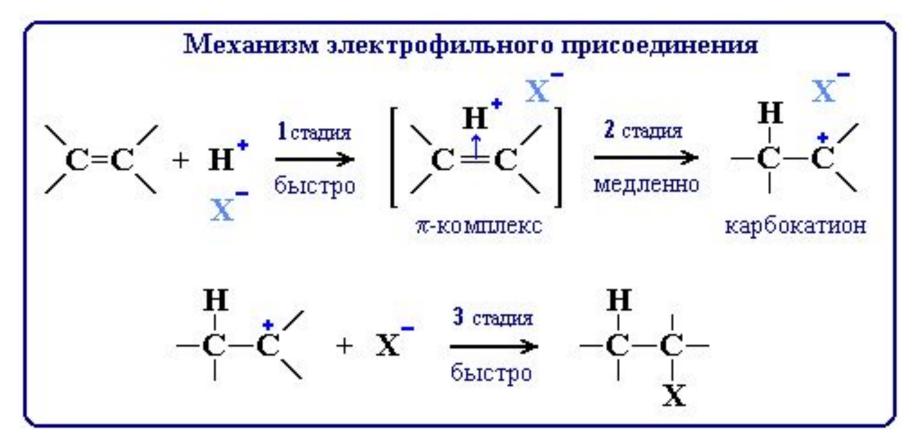
$$H_2C=CH_2+HBr \rightarrow H_3C-CH_2Br$$

• Присоединение воды (реакция гидратации):

$$H_2C = CH_2 + H_2O \rightarrow H_3C - CH_2OH$$

Механизм реакции присоединения *галогеноводородов* к алкенам

$$\mathrm{CH_2} = \mathrm{CH_2} + \mathrm{HCl} \longrightarrow \mathrm{CH_2} - \mathrm{CH_2}$$
 $\mathrm{H} \quad \mathrm{Cl}$ хлорэтан


• Реакция идёт по **ионному механизму электрофильного присоединения**

с гетеролитическим (неравномерным) разрывом связей.

Электрофилом является протон Н⁺ в составе молекулы галогеноводорода НХ (X – галоген).

Механизм реакции присоединения *галогеноводородов* к алкенам

• При химической реакции π- связь легко разрывается и по линии разрыва происходит присоединение атомов или групп атомов.

Интерактивная

http://www.chemistry.ssu.samara.ru/chem2/u4413.htm

Правило Марковникова

Русский химик-органик.

R—►CH==CH₃

В реакциях присоединения полярных молекул к несимметричным алкенам
 водород присоединяется к более
 гидрированному атому углерода при двойной связи.

Реакция идет по ионному механизму.

$$CH_2=CH-CH_3+HCl \longrightarrow CH_3-CHCl-CH_3$$
 пропилен 2-хлорпропан

ПРИСОЕДИНЕНИЕ ПО ПРАВИЛУ МАРКОВНИКОВА

Гидрогалогенирование пропена

$$H_3C-CH=CH_2+HBr\longrightarrow H_3C-CH-CH_3$$
 Вг 2-бромпропан

Гидратация пропена

$$H_3C-CH=CH_2+HOH$$
 $\xrightarrow{H^+}$ $H_3C-CH-CH_3$ OH пропанол-2 $H_3C-CH_2-CH_2$ $\xrightarrow{\Theta}$ $H_3C-CH=CH_2+H^+$ $H_3C-CH-CH_3$ вторичный ион

ОТЩЕПЛЕНИЕ ПО ПРАВИЛУ ЗАЙЦЕВА

Дегидрогалогенирование 2-хлорбутана

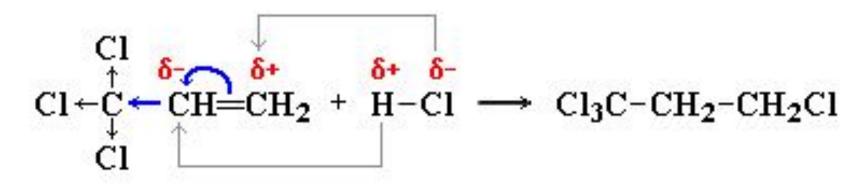
$$H_3C-CH-CH_2-CH_3 \xrightarrow{KOH (спиртовой p-p), t} H_3C-CH=CH-CH_3$$
CI

Дегидратация бутанола-2

$$H_3C-CH-CH_2-CH_3 \xrightarrow{H_2SO_4 \text{ (конц.), } t} H_3C-CH=CH-CH_3$$
OH

Важно:

Присоединение может происходить против правила Марковникова, если:


Исключения!!!

1) если в алкене присутствует электроноакцепторный заместитель, т.е. группа способная оттягивать на себя электронную плотность, т.к. обладает большей электроотрицательностью (например, атомы F, Cl, O):

$$F_3C \leftarrow CH=CH_2 + HBr \rightarrow F_3C - CH_2 - CH_2Br$$
 1,1,1- трифтор-3-бромпропан

2) Присоединение в присутствии H₂O₂ (эффект Хараша)

Присоединение против правила Марковникова

-І-эффект группы ССІ_З

при высоких температурах возможны реакции радикального замещения с галогенами

При нагревании до 500 °C возможно радикальное замещение атома водорода при соседнем к двойной связи атоме углерода:

$$CH_3-CH=CH_2+Cl_2 \longrightarrow Cl-CH_2-CH=CH_2+HCl$$

- При высоких температурах (более 400 °C) реакции радикального присоединения, носящие обратимый характер, подавляются.
- В этом случае становится возможным провести замещение атома водорода, находящегося в аллильном положении (соседнее при двойной связи) при этом двойная связь сохраняется.
- <u>Реакция носит радикальный характер</u> (радикальное замещение) и протекает аналогично хлорированию алканов.

$$CH_3CH=CH_2 + Cl_2 \xrightarrow{400-5000C} ClCH_2CH=CH_2 + HCl$$

1) Реакции окисления кислородом воздуха

• 1) Полное окисление (горение):

$$H_2C = CH_2 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$

2) Частичное окисление на катализаторе:

$$2H_{2}C = CH_{2} + O_{2} \rightarrow 2H_{2}C - CH_{2}$$

$$O$$

на серебряном катализаторе 2С
$$H_2$$
 = С H_2 + О $_2$ \rightarrow 2С H_2 -С H_2 (оксид этилена) \land \land \land

В присутствии солей меди $2CH_2 = CH_2 + O_2 \rightarrow 2CH_3CHO$ (уксусный альдегид).

2) Окисление алкенов в <u>мягких</u> условиях

(без нагревания, нейтральная среда)

(Реакция Вагнера Е.Е.)

При окислении алкенов *разбавленным раствором перманганата калия* **КМпО₄** при обычных условиях или на холоду, *образуются двухатомные спирты* – *гликоли.*

Это качественная реакция на алкены.

$$3H_2C=CH_2 + 2KMnO_4 + 4H_2O \rightarrow 3CH_2-CH_2$$
(этиленгликоль) + $2MnO_2 + 2KOH$ I I OH OH

В результате реакции наблюдается обесцвечивание раствора перманганата калия.

Реакция Вагнера служит качественной пробой на двойную связь.

3) Окисление алкенов в <u>жёстких</u> условиях

(нагревание, кислотная среда)

При жестком окислении алкенов кипящим раствором перманганата калия в кислой среде происходит полный разрыв двойной связи и образование кислот или кетонов.

По образовавшимся продуктам (кислотам и кетонам) можно сделать заключение о строении и составе радикалов, связанных с этиленовой группировкой в исходном соединении.

Окисление алкенов в жёстких условиях

$$CH_3$$
- CH_2 - CH = CH_2 + $2KMnO_4$ + $3H_2SO_4$ = $=$ $=$ CH_3 - CH_2 - $COOH$ + CO_2 + $2MnSO_4$ + K_2SO_4 + $4H_2O_4$ $=$ C - $COOH$ + CO_2 + $COOH$ + CO_2 + $COOH$ +

Окисление алкенов в жёстких условиях

Разные случаи окисления алкенов в <u>жёстких</u> условиях

$$5C_2H_4 + 2KMnO_4 + 18H_2SO_4 = 10CO_2 + 6K_2SO_4 + 12MnSO_4 + 28H_2O_4$$

1)
$$C_2H_4$$
 + $KMnO_4$ + H_2SO_4 = CO_2 + H_2O + K_2SO_4 + $MnSO_4$
2) C_3H_6 (пропен) + $KMnO_4$ + H_2SO_4 = CO_2 + H_2O + CH_3COOH + K_2SO_4 + $MnSO_4$
3) C_3H_4 (пропин) + $KMnO_4$ + H_2O = CH_3COOH + $HCOOH$ + MnO_2 + KOH

При окислении бутадиена в кислой среде разрыв будет по обоим двойным связям?

Полимеризация алкенов

процесс образования высокомолекулярного соединения (полимера) путем соединения друг с другом молекул исходного низкомолекулярного соединения (мономера)

$$H_2C = CH_2 + H_2C = CH_2 + H_2C = CH_2 + \dots \xrightarrow{xar} \dots -H_2C - CH_2 - H_2C - CH_2 - H_2C - CH_2 - \dots$$

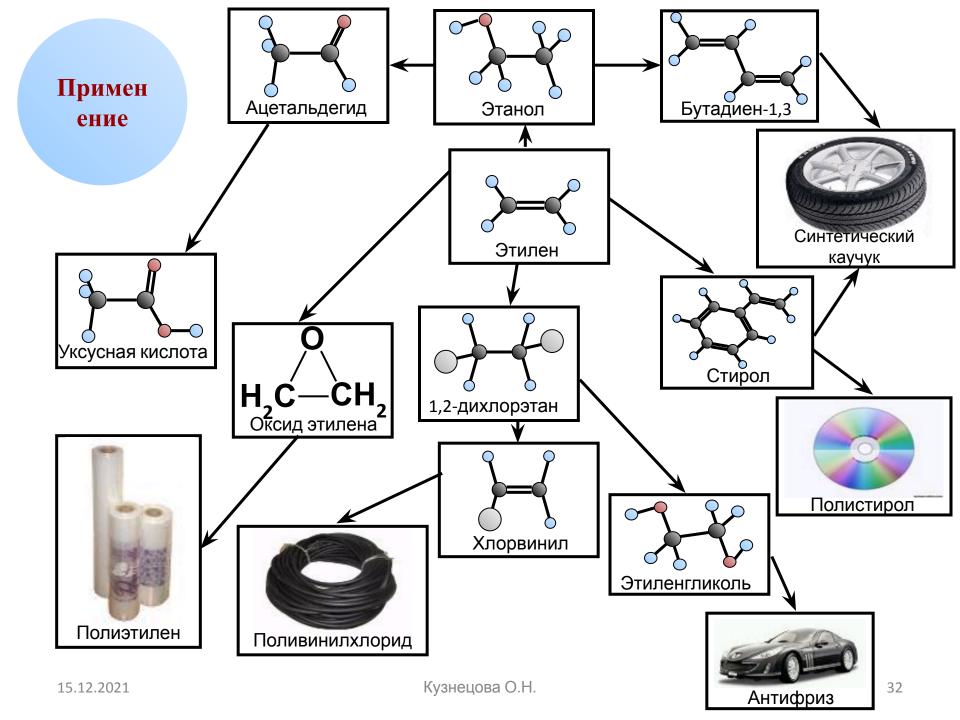
$$n H_2C = CH_2 \xrightarrow{\text{NAT}} [-H_2C - CH_2 -]_n$$

Где, **n** – число структурных звеньев в молекуле.

Исходное низкомолекулярное вещество, вступающее в реакцию полимеризации, называется **мономер**.

При полимеризации двойные связи в молекулах исходного непредельного соединения "раскрываются", и за счет образующихся свободных валентностей эти молекулы соединяются друг с другом.

Полимеризация алкенов


$$n \text{ CH}_2 = \text{CH}_2 \xrightarrow{\text{Kat.}} (-\text{CH}_2 - \text{CH}_2 -)_n$$
nолиэтилен

$$n \ \mathrm{CH_2}\text{=}\mathrm{CH} \xrightarrow{\mathrm{Kat.}} (-\mathrm{CH_2}\text{-}\mathrm{CH}\text{-})_n$$
 $\mathrm{CH_3} \qquad \mathrm{CH_3}$
 $nponuneh \qquad nonunponuneh$

Выводы:

- Алкены непредельные углеводороды, в молекулах которых имеется одна двойная связь. Атомы углерода находятся в состоянии sp^2 гибридизации. Общая формула C_nH_{2n} . В названии алкенов используется суффикс —eh.
- Для алкенов характерны: изомерия углеродной цепи, изомерия положения двойной связи, пространственная (геометрическая) и изомерия между классами.
- Алкены обладают большой химической активностью. За счёт наличия π-связи алкены вступают в реакции присоединения, окисления, полимеризации.

Получение алкенов

1) Дегидратация спиртов:

$$C_2H_5OH \xrightarrow{t=100 \text{ °C, } H_2SO_4 \text{ (коппт.)}} C_2H_4 + H_2O.$$

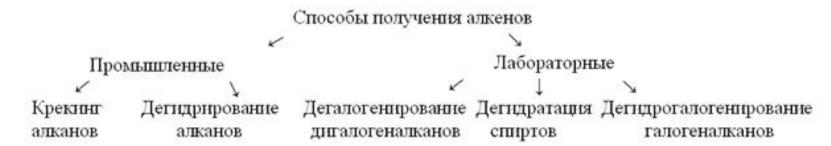
2) Дегидрирование аканов:

$$2CH_4 \xrightarrow{550-650 \text{ °C, кат.}} C_2H_4 + 2H_2,$$
 $C_2H_6 \xrightarrow{500 \text{ °C, Ni}} C_2H_4 + H_2,$
 $C_3H_8 \xrightarrow{500 \text{ °C, Ni}} CH_3-CH=CH_2 + H_2.$

3) Пиролиз и крекинг нефти и природного газа:

$$CH_3(CH_2)_6CH_3 \xrightarrow{r} C_4H_{10} + CH_2 = CHCH_2CH_3.$$

4) Из галогенопроизводных алканов:


4) Из галогенопроизводных алканов:

1-хлорпропан

$$CH_2Br-CHBr-CH_3 + Zn \xrightarrow{t} CH_2=CH-CH_3 + ZnBr_2,$$
 $CH_2Br-CH_2Br + Zn \xrightarrow{t} CH_2=CH_2 + ZnBr_2,$
 $CH_2Br-CH_2Br + Zn \xrightarrow{t} CH_2=CH_2 + ZnBr_2,$
 $CH_2-Cl + KOH \xrightarrow{cmupt, t} CH_2=CH_2 + KCl + H_2O,$
 $CH_3 \xrightarrow{xnopotah}$
 $CH_2-Cl \xrightarrow{t} CH_2=CH-CH_3 + KCl + H_2O,$
 $CH_2-Cl \xrightarrow{t} CH_2-CH_3 + KCl + H_2O,$
 $CH_2-Cl \xrightarrow{t} CH_2-CH_3 + KCl + H_2O,$
 $CH_3 \xrightarrow{t} CH_2-CH_3 + KCl + H_2O.$
 $CH_3 \xrightarrow{t} CH_3-CH_3 + KCl + H_2O.$
 $CH_3 \xrightarrow{t} CH_3-CH_3 + KCl + H_2O.$
 $CH_3 \xrightarrow{t} CH_3-CH_3 + KCl + H_2O.$

Применение алкенов

Свойство	Уравнение	Применение
1. Полимеризация	$nCH_2 = CH_2 \rightarrow (-CH_2 - CH_2 -)n$	Производство пластмасс.
2. Алкилирование	$CH_2 = CH_2 + CH_3 - CH_2 - CH_3 \rightarrow$ $CH_3 - CH_2 - CH_2 - CH_3 - CH_3$	В качестве моторного топлива
3. Галогенирование и гидрогалогенирование	$CH_2 = CH_2 + Cl_2 \rightarrow CH_2Cl - CH_2Cl$	Растворитель
	$CH_2 = CH_2 + HC1 \rightarrow CH_3 - CH_2C1$	Местная анестезия, растворитель, в с/х для обеззараживания зернохранилищ.
4. Гидратация	$CH_2 = CH_2 + HOH \rightarrow CH_3 - CH_2OH$	Растворитель, в медицине.ю в производстве синтетического каучука
5. Окисление [O] р-ром КМпО4	$CH_2 = CH_2 + [O] + H_2O \rightarrow CH_2OH - CH_2OH$	Получение антифризов, тормозных жидкостей, в производстве пластмасс.
6. Особые свойства этилена этилен- регулятор роста растений	CI- CH_2 - CH_2 - $P(OH)_2$ = $O \rightarrow$ $\rightarrow CH_2$ = $CH_2 + H_3 PO_4 + HC1$	Препарат «этрел» (1946г. М.И. Кабачник и П.А. Российская) попадая в растение разлагается с выделение этилена, ускоряет созревание плодов.

Способы получения алкенов

- крекинг нефтепродуктов (алканов) $C_8H_{18} \longrightarrow C_4H_8 + C_4H_{10}$; (термический крекинг при 400-700 °C)
- бутен бутан – дегидрирование алканов C_4H_{10} —> $C_4H_8+H_2$; (t, Ni) бутен водород
- дегидрогалогенирование галогеналканов $C_4H_9CI + KOH \longrightarrow C_4H_8 + KCI + H_2O$; хлорбутан гидроксид бутен хлорид вода калия калия

октан

- дегидрогалоге $CH_2 CH_2 + Zn \rightarrow ZnCl_2 + CH_2 = CH_2$; хлорид этен цинка дихлорэтан
 - **дегидратация спиртов С_2H_5OH —> С_2H_4 + H_2O (при нагревании в присутствии** концентрированной серной кислоты)
 - Запомните! При реакциях дегидрирования, дегидратации, дегидрогалогенирования и дегалогенирования нужно помнить, что водород преимущественно отрывается от менее гидрогенизированных атомов углерода (правило Зайцева, 1875 г.)

Тестовое задание № 1:

- 1. Ациклические углеводороды, в молекулах которых содержится одна двойная связь, называются
- А) алканы \mathcal{E}) алкены \mathcal{E}) алкины \mathcal{E}) арены.
- 2. Для алкенов характерна изомерия
- А) углеродного скелета Б) положения кратной связи
- B) геометрическая Γ) все ответы верны.
- 3. Формула 2,3-диметилпентена-1

Тестовое задание № 2:

•	1. Реакция присоед	цинения водс	рода называется
A)	гидрирование	Б) гидрога	логенирование
B)	гидратация	В) дегидри	рование
•	2. В реакции броми	ирования про	опена образуется
A)	1,3-дибромпропан	<i>Б) 1-бром</i>	пропан
B)	2-бромпропан	Γ) 1,2- $\partial u\theta$	ромпропан
•	3. Сумма коэффиці	иентов в ураз	внении горения
	пропена равно:		
A)	11 Б) 15	B) 21	<i>Γ</i>) 23
•	4. При гидрогалого	енировании а	лкенов атом водорода
	присоединяется к.	гидрирова	нному атому углерода,
	а атом галогена – к	гидрирог	ванному.
A)	более Б) м	<i>иенее</i>	

Тестовое задание № 3:

- 1. Бутен можно получить крекингом:
- А) бутана \mathcal{B}) пентана \mathcal{B}) гексана \mathcal{C}) октана
- 2. Какие признаки характеризуют физические свойства этена: 1) бесцветная жидкость, 2) имеет резкий запах, 3) бесцветный газ, 4) немного легче воздуха, 5) почти без запаха, 6) плохо растворим в воде, 7) не горит, 8) с воздухом образует взрывоопасные смеси?
- A) 3,4,5,6,8 B) 1,2,6,7 B) 2,3,4,6,8 Γ) 3,4,6,8
- 3. Плотность паров алкена по водороду равна 49. Массовая доля углерода в нём 85,71%, массовая доля водорода 14,29%. Молекулярная формула этого углеводорода
- A) C_5H_{10} B) C_6H_{12} B) C_7H_{14} Γ) C_8H_{16}

4. По ионному механизму протекают реакции, уравнения которых:

3)
$$CH_3-C=CH_2 + HBr \rightarrow CH_3-CBr-CH_3$$

 CH_3 CH_3

4)
$$C_2H_6 + Cl_2 -> C_2H_5Cl + HCl$$

Взаимодействие пропена с хлором на свету

- 1) относится к реакции присоединения
- 2) протекает по радикальному механизму
- 3) протекает с разрывом б-связи
- 4) протекает в соответствии с правилом Марковникова
- 5) приводит к образованию 3-хлорпропена
- 6) является каталитической реакцией

Взаимодействие пропена с хлором на свету

- 1) относится к реакции присоединения
- 2) протекает по радикальному механизму
- 3) протекает с разрывом б-связи
- 4) протекает в соответствии с правилом Марковникова
- 5) приводит к образованию 3-хлорпропена
- 6) является каталитической реакцией

Решение.

Взаимодействие пропена с хлором на свету (реакция Львова) - реакция замещения водорода в α-положении по отношению к двойной связи.

$$H-CH_2-CH=CH_2+Cl_2\xrightarrow{h\nu}Cl-CH_2-CH=CH_2+HCl$$

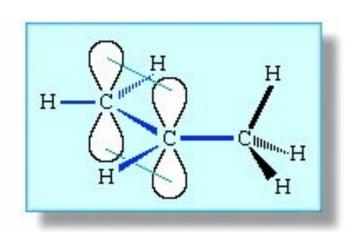
Реакция протекает по радикальному механизму, с разрывом б-связи. Продуктами реакции являются хлороводород и 3-хлорпропен

Ответ: 235

Используя правило Марковникова, напишите уравнения следующих реакций присоединения:

a)
$$CH_3$$
- $CH=CH_2$ + $HCI \rightarrow ?$

$$σ$$
) CH_2 = CH - CH_2 - CH_3 + HBr → ?


B)
$$CH_3$$
- CH_2 - $CH=CH_2$ + $HOH \rightarrow ?$

Ответы: a)
$$CH_3$$
- $CH=CH_2$ + $HCI \rightarrow CH_3$ - $CHCI$ - CH_3
б) CH_2 = CH - CH_2 - CH_3 + $HBr \rightarrow CH_3$ - $CHBr$ - CH_2 - CH_3
в) CH_3 - CH_2 - CH = CH_2 + $HOH \rightarrow CH_3$ - CH_2 - CH - CH_3

Составьт е уравнения реакций:

- а) пропена с хлоров одородом,
- б) пентена-1 с бромом,
- в) полимеризации этилена.

Итоговый контроль

- Укажите продукты реакции и тип реакции:
- 1. $CH3 CH = CH2 + Cl2 \rightarrow$
- 2. CH3 CH = CH CH2 + H2 \rightarrow
- 3. CH2 = CH2 + KMnO4 \rightarrow
- 4. n (CH2 = CH) → | Cl
- II. Укажите вещество В и укажите тип реакции №4. Дайте название продукта реакции №4. Кон Cl2 4 CH3 CH2 CH3 \rightarrow A \rightarrow B \rightarrow CH2 = CH2 \rightarrow (- CH2 CH2 -)n спирт.p-p
- III. Напишите уравнение реакции полимеризации пропилена.
- IV. Как бутены -1 и -2 реагируют с галогеноводородами? Подтвердите соответствующими уравнениями реакций.
- V. Осуществите цепочку превращений:

Алкены в природе

В природе ациклические алкены практически не встречаются. Простейший представитель

этого класса органических соединений — этилен (${\rm C_2H_4}$) — является гормоном для растений и

в незначительном количестве в них синтезируется.

Один из немногих природных алкенов — мускалур (цис- трикозен-9) является ноловым аттрактантом самки домашней мухи (Musca domestica).

Низшие алкены в высоких концентрациях обладают наркотическим эффектом. Высшие члены ряда также вызывают судороги и раздра: оболочек дыхательных путей.

Отдельные представители:

Этилен — вызывает наркоз, обладает раздражающим и мутагенны действием.

Пропилен — вызывает наркоз (сильнее, чем этилен), оказывает общетоксическое и мутагенное действие.

Бутен-2 — вызывает наркоз, обладает раздражающим действием.

Лабораторный опыт:

Получить этилен и изучить его свойства

Инструкция по получению этилена и опытов с ним

- 1. Поместите в пробирку 2 мл концентрированной серной кислоты, 1 мл спирта и небольшое количество песка.
- 2. Закройте пробирку пробкой с газоотводной трубкой и нагрейте в пламени спиртовки.
- 3. Выделяющийся газ пропустите через раствор с перманганатом калия. Обратите внимание на изменение цвета раствора.
- 4. Подожгите газ у конца газоотводной трубки. Обратите внимание на цвет пламени.
 - алкены горят светящимся пламенем. (Почему?)

$$C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$$

(при полном окислении продуктами реакции являются углекислый газ и вода)

- Качественная реакция: «мягкое окисление (в водном растворе)»
 - алкены обесцвечивают раствор перманганата калия (реакция Вагнера)
- При более жёстких условиях в кислой среде продуктами реакции могут быть карбоновые кислоты, например (в присутствии кислот):

$$CH_3$$
 – CH = CH_2 + 4 [O] —> CH_3 COOH + HCOOH

– каталитическое окисление.