

1. Прямое произведение множеств

Пусть а, b – два произвольных объекта.

Упорядоченная пара: (a,b).

Если $a\neq b$, то $(a,b)\neq (b,a)$.

Упорядоченная последовательность n объектов: $(a_1, a_2, ..., a_n)$.

Прямое (декартово) произведение множеств *А*×*В* – это множество упорядоченных пар элементов из этих множеств:

 $A \times B = \{(a,b) \mid a \in A, b \in B\}.$

Если $A \neq B$, то $B \neq A$.

Прямое произведение *п* множеств:

$$A_1 \times A_2 \times ... A_n = \{(a_1, a_2, ..., a_n) \mid a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n\}$$

 $A \times A \times ... A = A^n$

1. Прямое произведение множеств

Утверждение. |A| = m, $|B| = n \Rightarrow |A \times B| = m \times n$ Доказательство:

Выбрать первый элемент пары – m способов; выбрать первый элемент пары – n способов; по правилу умножения всего $m \times n$ способов.

Пусть А,В – произвольные множества.

Бинарное отношение ρ из множества A в множество B – это всякое подмножество прямого произведения $A \times B$.

 $\rho \subseteq A \times B$

Если A=B, то говорят о бинарном отношении на множестве A.

Форма записи: префиксная $(a,b) \in \rho$

инфиксная арь

*n***-арное отношение** – подмножество прямого произведения

n множеств: $\rho \subseteq A_1 \times A_2 \times ... A_n$.

График бинарного отношения – множество точек плоскости, координаты которых (*a*,*b*) образуют упорядоченные пары этого отношения.

Qбласть определения: $\rho_A = \{a \in A \mid (\exists b \in B): (a,b) \in \rho\}$

Область значений: $\rho_{B} = \{b \in B \mid (\exists b \in B) : (a,b) \in \rho\}$

Обратное к ρ отношение : $\rho^{-1} \subseteq B \times A$ $\rho^{-1} = \{(b,a) \mid (a,b) \in \rho\}$

Дополнение: $\bar{\rho} \subseteq A \times B$ $\bar{\rho} = \{(a,b) \mid (a,b) \notin \rho\}$

Композиция отношений: $\rho_1 \subseteq A \times C$, $\rho_2 \subseteq C \times B$

 $\rho_1 \circ \rho_2 = \{(a,b) \mid (a \in A, b \in B) \& (\exists c \in C: (a,c) \in \rho_1 \& (c,b) \in \rho_2\}.$

Если $\rho \subseteq A \times A$, то $\rho \circ \rho = \rho^2$, $\rho \circ \rho \circ \rho = \rho^3$ и т.д.

Утверждение.
$$\rho_1 \subseteq A \times C$$
, $\rho_2 \subseteq C \times B \Rightarrow (\rho_1 \circ \rho_2)^{-1} = \rho_2^{-1} \circ \rho_1^{-1}$ Доказательство: $(a,b) \in (\rho_1 \circ \rho_2)^{-1} \Rightarrow (b,a) \in \rho_1 \circ \rho_2 \Rightarrow \exists c \in C: (b,c) \in \rho_1 \& (c,a) \in \rho_2 \Rightarrow \Rightarrow (c,b) \in \rho_2^{-1} \& (a,c) \in \rho_1^{-1}$

Утверждение.
$$\rho_1 \subseteq A \times C$$
, $\rho_2 = \subseteq C \times B \Rightarrow (\rho_1 \circ \rho_2)^{-1} = \rho_2^{-1} \circ \rho_1^{-1}$ Доказательство: $(a,b) \in (\rho_1 \circ \rho_2)^{-1} \Rightarrow (b,a) \in \rho_1 \circ \rho_2 \Rightarrow \Rightarrow \exists c \in C: (b,c) \in \rho_1 \& (c,a) \in \rho_2 \Rightarrow \Rightarrow (a,c) \in \rho_1^{-1} \& (c,b) \in \rho_2^{-1} \Rightarrow \Rightarrow (a,b) \in \rho_2^{-1} \circ \rho_1^{-1}$.

Утверждение.
$$\rho_1 \subseteq A \times C$$
, $\rho_2 \subseteq C \times B \Rightarrow (\rho_1 \circ \rho_2)^{-1} = \rho_2^{-1} \circ \rho_1^{-1}$ Доказательство: $(a,b) \in (\rho_1 \circ \rho_2)^{-1} \Leftrightarrow (b,a) \in \rho_1 \circ \rho_2 \Leftrightarrow \Leftrightarrow (b,a) \in \rho_1 \circ \rho_2 \Leftrightarrow \Leftrightarrow \exists c \in C: (b,c) \in \rho_1 \& (c,a) \in \rho_2 \Leftrightarrow \Leftrightarrow (a,c) \in \rho_1^{-1} \& (c,b) \in \rho_2^{-1} \Leftrightarrow \Leftrightarrow (a,b) \in \rho_2^{-1} \circ \rho_1^{-1}.$

Пусть $\rho \subseteq A \times A$.

Рефлексивное отношение:

 $(\forall a \in A): (a,a) \in \rho.$

Антирефлексивное отношение:

 $(\forall a \in A): (a,a) \notin \rho.$

Симметричное отношение:

 $(\forall a,b \in A, a \neq b): (a,b) \in \rho \Rightarrow (b,a) \in \rho.$

Антисимметричное отношение:

 $(\forall a,b\in A): ((a,b)\in \rho, (b,a)\in \rho \Rightarrow a=b).$

Транзитивное отношение:

 $(\forall a,b,c\in A):((a,b)\in\rho,(b,c)\in\rho\Rightarrow(a,c)\in\rho).$

Полное отношение:

 $(\forall a,b,c\in A)$: $(\forall a,b\in A,a\neq b)$: $(a,b)\in \rho$ или $(b,a)\in \rho$.

Отношение $\rho \subseteq A \times A$:

- 1) рефлексивно $\Leftrightarrow l \subseteq \rho$;
- 2) симметрично $\Leftrightarrow \rho = \rho^{-1}$;
- 3) транзитивно $\Leftrightarrow \rho \circ \rho \subseteq \rho$;
- 4) антирефлексивно $\Leftrightarrow \rho \cap I = \emptyset$;
- 5) антисимметрично $\Leftrightarrow \rho \cap \rho^{-1} \subseteq I$;
- 6) полно $\Leftrightarrow \rho \ U \rho^{-1} U I = U$.

Утверждение 1. $\rho \subseteq A \times A$ рефлексивно $\Leftrightarrow I \subseteq \rho$.

Доказательство:

ρ рефлексивно ⇔

 \Leftrightarrow ($\forall a \in A$): $(a, a) \in \rho \Leftrightarrow$

 $\Leftrightarrow I \subseteq \rho$.

Утверждение 2. $\rho \subseteq A \times A$ СИММЕТРИЧНО $\Leftrightarrow \rho = \rho^{-1}$.

Доказательство:

 ρ симметрично \Leftrightarrow

 \Leftrightarrow [($\forall a,b\in A, a\neq b$): $(a,b)\in \rho \Leftrightarrow (b,a)\in \rho$] \Leftrightarrow

 \Leftrightarrow $(a,b)\in \rho^{-1}$ \lor $(b,a)\in \rho^{-1}$ \Leftrightarrow

 \Leftrightarrow $(a,b) \in \rho^{-1}$ $(a,b) \in \rho \Leftrightarrow$

 $\Leftrightarrow \rho \subseteq \rho^{-1} \vee \rho^{-1} \subseteq \rho \Leftrightarrow$

 $\Leftrightarrow \rho = \rho^{-1}$.

Утверждение 3. $\rho \subseteq A \times A$ транзитивно $\Leftrightarrow \rho \circ \rho$ $\subseteq \rho$.

Доказательство:

А) ρ транзитивно \Rightarrow

$$\Rightarrow$$
 [($\forall a,b,c\in A$): (a,b) $\in \rho$ и (b,c) $\in \rho \Rightarrow$ (a,c) $\in \rho$] $\rho \circ \rho \subseteq$ (a,c) $\in \rho \circ \rho \Rightarrow$

 $\Rightarrow \exists b: (a,b) \in \rho \ \mathsf{u} \ (b,c) \in \rho \Rightarrow (a,c) \in \rho$

Б)
$$\rho \circ \rho \subseteq \rho$$
.

Пусть $(a,b) \in \rho$ и $(b,c) \in \rho \Rightarrow$

$$\Rightarrow$$
(a,c) \in ρ \circ ρ \Rightarrow

 $\Rightarrow \rho$ транзитивно.

Утверждение 4. $\rho \subseteq A \times A$ антирефлексивно $\Leftrightarrow \rho \cap I = \emptyset$.

Доказательство:

ρ антирефлексивно ⇔

 \Leftrightarrow ($\forall a \in A$): (a, a) $\notin \rho \Leftrightarrow$

 $\Leftrightarrow \rho \cap I = \emptyset.$

Утверждение 5. $\rho \subseteq A \times A$ антисимметрично $\Leftrightarrow \rho \cap \rho^{-1} \subseteq I$.

Доказательство:

ρ антисимметрично ⇔

- \Leftrightarrow [($\forall a,b\in A$): (a,b) $\in \rho$ и (b,a) $\in \rho \Rightarrow a=b$] \Leftrightarrow
- $\Leftrightarrow [(a \neq b \ \mathsf{u} \ (a,b) \in \rho) \Leftrightarrow (a,b) \in \rho \ \mathsf{u} \ (b,a) \in \rho^{-1}] \Leftrightarrow$
- $\Leftrightarrow \rho \cap \rho^{-1} \subseteq I$.

Утверждение 6. $\rho \subseteq A \times A$ ПОЛНО $\Leftrightarrow \rho \cup \rho^{-1} \cup I = U$.

Доказательство:

$$\rho$$
 полно \Leftrightarrow

$$\Leftrightarrow$$
 ($\forall a,b \in A,a \neq b$): $(a,b) \in \rho$ или $(b,a) \in \rho$ \Leftrightarrow

$$\Leftrightarrow$$
 $(b,a)\in \rho^{-1}$ или $(a,b)\in \rho^{-1}\Leftrightarrow$

$$\Leftrightarrow$$
 $(a,b) \in \rho \ U\rho^{-1} \ \mathsf{u} \ (b,a) \in \rho \ U\rho^{-1} \Leftrightarrow$

$$\Leftrightarrow \rho \cup \rho^{-1} = \rho \cup \rho^{-1} \cup I = U.$$

4. Замыкание отношений

```
Для бинарного отношения \rho \subseteq A \times A: рефлексивное замыкание \rho_r = \rho \cup I; симметричное замыкание \rho_s = \rho \cup \rho^{-1}; транзитивное замыкание \rho_t = \rho \cup \rho^2 \cup \rho^3 \cup \dots \cup \rho^n \cup \dots
```

При этом:

- ρ_r рефлексивное бинарное отношение;
- ho_{ς} симметричное бинарное отношение;
- ρ_{t} транзитивное бинарное отношение.

