Работа с векторами и матрицами в MathCad

Массивы

одномерные

(векторы)

$$V_1 := \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 $V_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $V_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_2 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $U_1 := \begin{pmatrix} 1 & 2 & 3$

тензоры

<u>двумерные</u>

(матрицы)

$$\mathbf{M} := \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Заполнение массивов

1. С помощью шаблона:

2. Поэлементно

$$m_{0,0} := 0$$
 $m_{0,1} := 1$ $m_{0,2} := 2$ $m_{1,0} := 3$ $m_{1,1} := 4$ $m_{1,2} := 5$ $m = \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix}$

$$\mathbf{m} = \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix}$$

3. С использованием переменных и функций пользователя

$$i := 0..1$$
 $j_w := 0..3$ $V_i := 0.5 \cdot i + 1$ $V^T = (1 1.5)$

$$V_i := 0.5 \cdot i + 1$$
 $V_j^T = (1 \ 1.5)$ $V_{i,j} := i - j$ $V_i^T = (1 \ 1.5)$ $V_{i,j}^T := i - j$ $V_i^T = (1 \ 1.5)$

- 4. Применение встроенных функций
- 5. Чтение из внешнего файла 6. Создание программ-функций

Матричные вычисления

элементарные действия

создание, сложение, умножение, извлечение данных

Реализация: операторы панели **Math**: Calculator,

Matrix, Symbolic

использование специальных функций и встроенных алгоритмов матричной алгебры

ранг, единичная матрица, сортировка

Реализация: главное меню **Insert** (Вставка) \rightarrow **Function** (Функция) (или f(x)) \rightarrow раздел Vector and Matrix (Векторы и матрицы)

<u>использование</u> <u>программирования</u>

суммирование элементов вложенного массива

Операторы и функции для работы с векторами и матрицами

V – вектор, M – матрица, Z – скаляр

Оператор	Ввод	Назначение оператора;
V1+V2	V1+V2	Сложение двух векторов V1 и V2;
-V	-V	Смена знака у элементов вектора V;
V-Z	V-Z	Вычитание из вектора V скаляра Z;
Z*V, V*Z	Z*V, V*Z	Умножение вектора V на скаляр Z;
Z*M, M*Z	Z*M, M*Z	Умножение матрицы М на вектор V
V1*V2	V1*V2	Умножение двух векторов V1 и V2;
M1*M2	M1*M2	Умножение двух матриц M1 и M2;
V/Z	V/Z	Деление вектора V на скаляр Z;
M/Z	M/Z	Деление матрицы М на скаляр Z;

Оператор	Ввод	Назначение оператора;
M ⁻¹	M^-1	Обращение матрицы М;
M ⁿ	M^n	Возведение матрицы М в степень п;
M	M	Вычисление определителя матрицы М;
\mathbf{V}^{T}	V Ctrl!	Транспонирование вектора V;
M ^T	M Ctrl !	Транспонирование матрицы М;
$\sum v$	Ctrl \$ V	Вычисление суммы элементов вектора V;
M ^{<n></n>}	M Ctrl ^n	Выделение п-го столбца матрицы М;
V _n	V[n	Выделение n-го элемента вектора V;
M _{m,n}	M [(m,n)	Выделение элемента (m, n) матрицы М.
V M	V Ctrl - M Ctrl -	Векторизация вектора V; матрицы M;

Векторные и матричные функции Векторные функции

Функция	Описание
length(V)	Возвращает длину вектора
last(V)	Возвращает индекс последнего элемента
max(V)	Возвращает максимальный по значению элемент
min(V)	Возвращает минимальный по значению элемент
Re(V)	Возвращает вектор действительных частей вектора с комплексными элементами
Im(V)	Возвращает вектор мнимых частей вектора с комплексными элементами

Векторные и матричные функции Функции для работы с матрицами

Функция	Описание
augment(M1,M2)	Объединяет в одну матрицы <i>M</i> 2 и <i>M</i> 2, имеющие одинаковое число строк (объединение «бок о бок»)
stack(M1,M2)	Объединяет в одну матрицы $M1$ и $M2$, имеющие одинаковое число столбцов, располагая $M1$ над $M2$
identity(n)	Создает единичную квадратную матрицу размером $n \times n$
submatrix(M,ir,jr,ic,jc)	Возвращает субматрицу, состоящую из всех элементов, содержащихся в строках с ir по jr и столбцов с ic по jc
diag(V)	Создает диагональную матрицу, элемент главной диагонали которой — вектор V
Re(M) Im(M)	Возвращает матрицу действительных, мнимых частей матрицы M с комплексными элементами

Векторные и матричные функции Функции для работы с матрицами

Функция	Описание
lookup(r,M,N)	Выводит значения того элемента матрицы N , который занимает в ней такое же положение, что и скаляр r в матрице M
match(z,M)	Ищет в векторе или матрице A заданное значение z и возвращает индексы его позиций в A

Функции, возвращающие специальные характеристики матриц

Функция	Описание
cols(M)	Возвращает число столбцов матрицы М
rows(M)	Возвращает число строк матрицы M
rank(M)	Возвращает ранг матрицы M
tr(M)	Возвращает след (сумму диагональных элементов) квадратной матрицы M
mean(M)	Возвращает среднее значение элементов массива M
median(M)	Возвращает медиану элементов массива М
eigenvals(M)	Возвращает вектор собственных значений квадратной матрицы M

Функции сортировки

Функция	Описание
sort(V)	Сортировка элементов вектора в порядке возрастания их значений
reverse(V)	Перестановка элементов вектора в обратном порядке
csort(M,n)	Перестановка строк матрицы M таким образом, чтобы отсортированным оказался n -й столбец
rsort(M,n)	Перестановка столбцов матрицы M таким образом, чтобы отсортированной оказалась n -я строка

$$m1 := \begin{pmatrix} -1 & -2 \\ 3 & 1 \end{pmatrix}$$

$$m2 := \begin{pmatrix} 1 & -2 \\ 3 & 2 \end{pmatrix}$$

$$m1^{\langle 1 \rangle} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$m1_{0,1} = -2$$

$$m1_{1,0} = 3$$

$$m1 \cdot m2 = \begin{pmatrix} -7 & -2 \\ 6 & -4 \end{pmatrix}$$

$$(m1 \cdot m2) = \begin{pmatrix} -1 & 4 \\ 9 & 2 \end{pmatrix}$$

$$\mathbf{v} := \begin{pmatrix} -2 \\ 3 \\ 7 \end{pmatrix}$$

$$length(v) = 3$$

$$last(v) = 2$$

$$max(v) = 7$$

$$min(v) = -2$$

$$m1 := \begin{pmatrix} -1 & -2 \\ 3 & -1 \end{pmatrix} \qquad m2 := \begin{pmatrix} 1 & -2 \\ 3 & 2 \end{pmatrix}$$

augment(m1,m2) =
$$\begin{pmatrix} -1 & -2 & 1 & -2 \\ 3 & -1 & 3 & 2 \end{pmatrix}$$

$$M := stack(m1, m2) = \begin{pmatrix} -1 & -2 \\ 3 & -1 \\ 1 & -2 \\ 3 & 2 \end{pmatrix}$$

submatrix(M,1,2,0,1) =
$$\begin{pmatrix} 3 & -1 \\ 1 & -2 \end{pmatrix}$$
 submatrix(M,1,2,0,0) = $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$

$$m1 := \begin{pmatrix} -1 & -2 \\ 3 & -1 \end{pmatrix}$$

$$m2 := \begin{pmatrix} 1 & -2 \\ 3 & 2 \end{pmatrix}$$

$$lookup(3, m1, m2) = (3)$$

$$lookup(-1, m1, m2) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\operatorname{match}(-1, \operatorname{m}1) = \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix}$$

$$match(3, m2) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

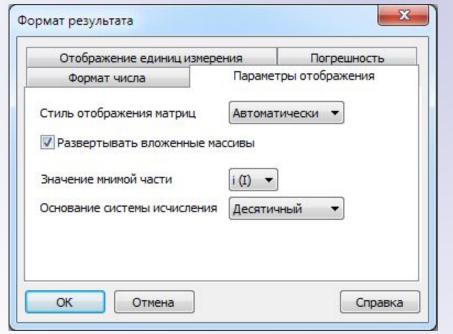
$$V_{\infty} := \begin{pmatrix} 9 \\ 3 \\ 5 \\ -2 \end{pmatrix}$$

$$sort(V) = \begin{pmatrix} -2\\3\\5\\9 \end{pmatrix}$$

$$reverse(V) = \begin{pmatrix} -2 \\ 5 \\ 3 \\ 9 \end{pmatrix}$$

$$sort(V) = \begin{pmatrix} -2\\3\\5\\9 \end{pmatrix} \qquad reverse(V) = \begin{pmatrix} -2\\5\\3\\9 \end{pmatrix} \qquad reverse(sort(V)) = \begin{pmatrix} 9\\5\\3\\-2 \end{pmatrix}$$

$$M := \begin{pmatrix} -1 & 5 & 7 & 2 \\ 0 & 7 & -4 & -2 \end{pmatrix}$$


$$csort(M,2) = \begin{pmatrix} 0 & 7 & -4 & -2 \\ -1 & 5 & 7 & 2 \end{pmatrix} \qquad rsort(M,1) = \begin{pmatrix} 7 & 2 & -1 & 5 \\ -4 & -2 & 0 & 7 \end{pmatrix}$$

rsort(M,1) =
$$\begin{pmatrix} 7 & 2 & -1 & 5 \\ -4 & -2 & 0 & 7 \end{pmatrix}$$

$$main(D, Ta, i, h) = \begin{pmatrix} \{4,1\} \\ \{4,1\} \\ \{5,1\} \\ \{201,2\} \\ \{4,1\} \\ \{4,1\} \\ \{4,1\} \\ \{4,1\} \\ \{1,2\} \end{pmatrix} \qquad main(D, Ta, i, h)_5 = \begin{pmatrix} 0 \\ \{5,1\} \\ \{5,1\} \\ \{5,1\} \end{pmatrix} \qquad \left(main(D, Ta, i, h)_5\right)_1 = \begin{pmatrix} 0 \\ 20 \\ 20 \\ 20 \\ 20 \end{pmatrix}$$

Формат — Результат — Параметры отображения

$$Rez(PM) = \begin{pmatrix} "номер(а) варианта(ов)" \\ \{1,3\} \end{pmatrix}$$

$$Rez(PM) = \begin{bmatrix} "номер(а) варианта(ов)" \\ (1 2 3) \end{bmatrix}$$

