
Database Management
Systems.

Lecture 3

Content:

▪ SQL DML

▪ SQL DQL

▪ Functions

▪ Filtering Data

▪ Conditional Expressions & Operators

SQL DML

▪ The SQL commands that deals with the manipulation of data
present in the database belong to DML or Data Manipulation
Language and this includes most of the SQL statements.

▪ It is the component of the SQL statement that controls access to
data and to the database.

▪ SQL DML commands:

▪ INSERT - is used to insert data into a table.

▪ UPDATE - is used to update existing data within a table.

▪ DELETE - is used to delete records from a database table.

INSERT
STATEMENT

▪ The INSERT statement of SQL is used to insert a new
row in a table. There are two ways of using INSERT
statement for inserting rows:

▪ Only values: First method is to specify only the value of data
to be inserted without the column names

▪ INSERT INTO table_name VALUES (value1, value2,
value3,…);

▪ Column names and values both: In the second method we will
specify both the columns which we want to fill and their
corresponding values as shown below:

▪ INSERT INTO table_name (column1, column2,
column3,..) VALUES (value1, value2, value3,..);

name of the table
values of first column, second column, etc…

INSERT multiple
rows

▪ To insert multiple rows in a table using Single SQL Statement:

INSERT INTO

table_name(Column1,Column2,Column3,.......)

VALUES (Value1, Value2,Value3,.....),

(Value1, Value2,Value3,.....),

(Value1, Value2,Value3,.....);

Using SELECT in
INSERT INTO

Statement

▪ We can use the SELECT statement with INSERT INTO statement
to copy rows from one table and insert them into another table.

▪ The use of this statement is like that of INSERT INTO statement.

▪ The difference is that the SELECT statement is used here to select
data from a different table.

▪ The different ways of using INSERT INTO SELECT statement are
shown below:
▪ Inserting all columns of a table. We can copy all the data of

a table and insert into in a different table:

▪ INSERT INTO first_table SELECT * FROM
second_table;

▪ Inserting specific columns of a table. We can copy only those
columns of a table which we want to insert into in a different table:

▪ INSERT INTO first_table(names_of_columns1) SELECT
names_of_columns2 FROM second_table WHERE
condition;

UPDATE
Statement

▪ The UPDATE statement in SQL is used to update the
data of an existing table in database.

▪ We can update single columns as well as multiple
columns using UPDATE statement as per our
requirement.

▪ Basic syntax:

UPDATE table_name

SET column1 = value1, column2 = value2,...

WHERE condition;

UPDATE JOIN

▪ Sometimes, you need to update data in a table based on
values in another table. In this case, you can use the
PostgreSQL UPDATE join syntax as follows:

UPDATE table1

SET table1.column1 = new_value

FROM table2

WHERE table1.column2 = table2.column2;

DELETE
Statement

▪ The DELETE Statement in SQL is used to delete
existing records from a table.

▪ We can delete a single record or multiple records
depending on the condition we specify in the WHERE
clause.

▪ Basic syntax:

DELETE FROM table_name

WHERE some_condition;

▪ Delete all the records:

▪ DELETE FROM table_name ;

DELETE JOIN

▪ PostgreSQL doesn’t support the DELETE
JOIN statement.

▪ However, it does support the USING clause in
the DELETE statement that provides similar functionality
as the DELETE JOIN.

DELETE FROM table_name1

USING table_expression

WHERE condition

RETURNING returning_columns;

DELETE FROM t1

USING t2

WHERE t1.id = t2.id

SQL DQL:
SELECT

statement

▪ SELECT is the most used statement in SQL.

▪ The SELECT Statement in SQL is used to retrieve or
fetch data from a database.

▪ We can fetch either the entire table or according to
some specified rules.

▪ The data returned is stored in a result table.

▪ This result table is also called result-set.

▪ Basic syntax:

SELECT column1,column2 FROM table_name;

▪ To fetch the entire table or all the fields in the table:

▪ SELECT * FROM table_name;

Column and
Table Aliases

▪ Alias allows you to assign a column(s) or table(s) in the
select list of a SELECT statement temporary name(s).

▪ The alias exists temporarily during the execution of the
query.

SELECT column_name AS column_alias

FROM table_name AS table_alias;

SELECT column_name column_alias

FROM table_name table_alias;

OR

▪ Column aliases that contain spaces:

SELECT column_name “column_alias”

FROM table_name table_alias;

PostgreSQL
ORDER BY

▪ When you query data from a table, the SELECT statement returns
rows in an unspecified order. To sort the rows of the result set, you
use the ORDER BY clause in the SELECT statement.

▪ The ORDER BY clause allows you to sort rows returned by
a SELECT clause in ascending or descending order based on a
sort expression.

▪ The following illustrates the syntax of the ORDER BY clause:

SELECT select_list

FROM table_name

ORDER BY sort_expression1 [ASC | DESC],

...

sort_expressionN [ASC | DESC];

PostgreSQL evaluates the clauses in the SELECT statment
in the following order: FROM, SELECT, and ORDER BY:

PostgreSQL
ORDER BY
clause and

NULL

▪ In the database world, NULL is a marker that indicates
the missing data or the data is unknown at the time of
recording.

▪ When you sort rows that contains NULL, you can specify
the order of NULL with other non-null values by using
the NULLS FIRST or NULLS LAST option of the ORDER
BY clause:

ORDER BY sort_expresssion [ASC | DESC] [NULLS FIRST | NULLS LAST]

▪ The NULLS FIRST option places NULL before other
non-null values and the NULL LAST option
places NULL after other non-null values.

▪ If you use the ASC option, the ORDER BY clause uses
the NULLS LAST option by default.

PostgreSQL
SELECT

DISTINCT

▪ The DISTINCT clause is used in the SELECT statement to
remove duplicate rows from a result set.

▪ The DISTINCT clause keeps one row for each group of
duplicates. The DISTINCT clause can be applied to one or
more columns in the select list of the SELECT statement.

▪ The following illustrates the syntax of the DISTINCT clause:

SELECT DISTINCT column1

FROM table_name;

▪ If you specify multiple columns, the DISTINCT clause
will evaluate the duplicate based on the combination of
values of these columns.

SELECT DISTINCT column1, column2

FROM table_name;

PostgreSQL
WHERE

▪ The SELECT statement returns all rows from one or more columns
in a table.

▪ To select rows that satisfy a specified condition, you use
a WHERE clause:

▪ The WHERE clause appears right after the FROM clause of
the SELECT statement.

▪ The WHERE clause uses the condition to filter the rows returned
from the SELECT clause.

▪ The condition must evaluate to true, false, or unknown. It can be a
boolean expression or a combination of boolean expressions
using the AND and OR operators.

▪ PostgreSQL evaluates the WHERE clause after the FROM clause
and before the SELECT and ORDER BY clause:

SELECT select_list

FROM table_name

WHERE condition

ORDER BY sort_expression

Operators in
WHERE clause

PostgreSQL IN

▪ You use IN operator in the WHERE clause to check if a
value matches any value in a list of values.

▪ The syntax of the IN operator is as follows:

▪ You can combine the IN operator with the NOT operator
to select rows whose values do not match the values in
the list.

SELECT select_list

FROM table_name

WHERE condition IN (value1,value2,...)

ORDER BY sort_expression

SELECT select_list

FROM table_name

WHERE condition NOT IN (value1,value2,...)

ORDER BY sort_expression

works like ”equal” sign (=)

works like ”not equal” sign (<>)

PostgreSQL
BETWEEN

▪ You use the BETWEEN operator to match a value
against a range of values. The following illustrates the
syntax of the BETWEEN operator:

▪ If the value is greater than or equal to the low value
and less than or equal to the high value, the
expression returns true, otherwise, it returns false.

SELECT select_list

FROM table_name

WHERE value BETWEEN low AND high;

ORDER BY sort_expression

▪ If you want to check if a value is out of a range, you
combine the NOT operator with
the BETWEEN operator as follows:

SELECT select_list

FROM table_name

WHERE value NOT BETWEEN low AND
high;

ORDER BY sort_expression

PostgreSQL LIKE
and NOT LIKE

▪ The PostgreSQL (NOT) LIKE operator is used to match text
values against a pattern using wildcards. If the search
expression can be matched to the pattern expression, the
LIKE operator will return true, which is 1.

▪ There are two wildcards used in conjunction with the LIKE
and NOT LIKE operators:

▪ The percent sign (%) - represents zero, one, or multiple
numbers or characters.

▪ The underscore (_) - represents a single number or
character.

▪ These symbols can be used in combinations.

SELECT FROM table_name

WHERE column (NOT)LIKE '%XXX%’;

SELECT FROM table_name

WHERE column (NOT)LIKE '_XXX_’;

OR

PostgreSQL IS
NULL

▪ In the database world, NULL means missing information or not
applicable.

▪ NULL is not a value; therefore, you cannot compare it with any
other values like numbers or strings.

▪ The comparison of NULL with a value will always result in NULL,
which means an unknown result.

▪ In addition, NULL is not equal to NULL, so the following
expression returns NULL: NULL = NULL;

▪ To check whether a value is NULL or not, you use the IS
NULL operator instead:

SELECT select_list

FROM table_name

WHERE value IS NULL;

▪ To check if a value is not NULL, you use the IS NOT
NULL operator:

SELECT select_list

FROM table_name

WHERE value IS NOT NULL;

PostgreSQL
LIMIT

▪ PostgreSQL LIMIT is an optional clause of the SELECT statement
that constrains the number of rows returned by the query.

▪ The following illustrates the syntax of the LIMIT clause:

SELECT select_list

FROM table_name

ORDER BY sort_expression

LIMIT row_count

▪ The statement returns row_count rows generated by the query.

▪ If row_count is zero, the query returns an empty set.

▪ In case row_count is NULL, the query returns the same result set
as it does not have the LIMIT clause.
▪ In case you want to skip a number of rows before returning

the row_count rows, you use OFFSET clause placed after
the LIMIT clause as the following statement:

SELECT select_list

FROM table_name

ORDER BY sort_expression

LIMIT row_count OFFSET rows_to_skip

PostgreSQL
FETCH

▪ To constrain the number of rows returned by a query, you often use
the LIMIT clause. The LIMIT clause is widely used by many
relational database management systems such as MySQL, H2, and
HSQLDB. However, the LIMIT clause is not a SQL-standard.

▪ To conform with the SQL standard, PostgreSQL supports
the FETCH clause to retrieve a few rows returned by a query. Note
that the FETCH clause was introduced in SQL:2008.

▪ The following illustrates the syntax of the
PostgreSQL FETCH clause:

SELECT select_list

FROM table_name

ORDER BY sort_expression

OFFSET start { ROW | ROWS }

FETCH { FIRST | NEXT } [row_count] { ROW | ROWS } ONLY

PostgreSQL
SERIAL

and
SEQUENCE

▪ In PostgreSQL, a sequence is a special kind of database
object that generates a sequence of integers. A
sequence is often used as the primary key column in a
table.

▪ When creating a new table, the sequence can be
created through the SERIAL pseudo-type as follows:

CREATE TABLE table_name(

id SERIAL);

By assigning the SERIAL pseudo-type to the id column,
PostgreSQL performs the following:

▪ First, create a sequence object and set the next value
generated by the sequence as the default value for the
column.

▪ Second, add a NOT NULL constraint to the id column
because a sequence always generates an integer, which is a
non-null value.

▪ Third, assign the owner of the sequence to the id column; as
a result, the sequence object is deleted when the id column
or table is dropped

PostgreSQL
SERIAL

and
SEQUENCE

▪ By definition, a sequence is an ordered list of integers. The orders
of numbers in the sequence are important. For
example, {1,2,3,4,5} and {5,4,3,2,1} are entirely different
sequences.

▪ A sequence in PostgreSQL is a user-defined schema-bound
object that generates a sequence of integers based on a specified
specification.

▪ To create a sequence in PostgreSQL, you use the CREATE
SEQUENCE statement:

CREATE SEQUENCE [IF NOT EXISTS] sequence_name

[AS { SMALLINT | INT | BIGINT }]

[INCREMENT [BY] increment]

[MINVALUE minvalue | NO MINVALUE]

[MAXVALUE maxvalue | NO MAXVALUE]

[START [WITH] start] [CACHE cache]

[[NO] CYCLE]

[OWNED BY { table_name.column_name | NONE }]

PostgreSQL
SERIAL

and
SEQUENCE

▪ Behind the scenes, the following statement:

▪ is equivalent to the following statements:

CREATE TABLE table_name(

id SERIAL);

CREATE SEQUENCE table_name_id_seq;

CREATE TABLE table_name (

id integer NOT NULL DEFAULT nextval('table_name_id_seq'));

ALTER SEQUENCE table_name_id_seq OWNED BY table_name.id;

PostgreSQL
Built-in

Functions:
CONCAT

▪ To concatenate two or more strings into one, you use the
string concatenation operator || as the following
example:

SELECT ‘Hello' || ' ' || ‘World' AS

result_string;

▪ The following statement concatenates a string with
a NULL value:

SELECT 'Concat with ' || NULL AS result_string;

PostgreSQL
Built-in

Functions:
CONCAT

▪ The CONCAT function accepts a list of arguments.

▪ The argument needs to be convertible to a string.

▪ A string in this context means any of the following data
types: char, varchar, or text.

▪ Unlike the concatenation operator ||,
the CONCAT function ignores NULL arguments.

SELECT CONCAT(str1, str2);

▪ Besides the CONCAT function, PostgreSQL also provides
you with the CONCAT_WS function that concatenates strings
into one separated by a particular separator.

▪ By the way, WS stands for with separator.

SELECT CONCAT_WS(separator, str1, str2);

PostgreSQL
LENGTH
Function

▪ The length function accepts a string as a parameter. A string can
be any of the following data types:

▪ character or char

▪ character varying or varchar

▪ text

▪ The length function returns the number of characters in the string.

SELECT LENGTH(string);

PostgreSQL CAS
T operator

▪ There are many cases that you want to convert a value
of one data type into another. PostgreSQL provides you
with the CAST operator that allows you to do this.

▪ The following illustrates the syntax of type CAST:

CAST (expression AS target_type);

▪ In this syntax:

▪ First, specify an expression that can be a constant, a table
column, an expression that evaluates to a value.

▪ Then, specify the target data type to which you want to
convert the result of the expression.

PostgreSQL CAS
T operator

▪ Besides the type CAST syntax, you can use the following
syntax to convert a value of one type into another:

expression::type;

SELECT '100'::INTEGER,

'01-OCT-2015'::DATE;

PostgreSQL
CASE

▪ The PostgreSQL CASE expression is the same
as IF/ELSE statement in other programming languages.

▪ It allows you to add if-else logic to the query to form a
powerful query.

▪ Since CASE is an expression, you can use it in any
places where an expression can be used e.g.,SELECT,
WHERE, GROUP BY, or HAVING clause.

▪ The CASE expression has two forms: general and
simple form.

PostgreSQL
CASE

▪ The following illustrates the general form of the CASE statement:

▪ Simple PostgreSQL CASE expression:

CASE

WHEN condition_1 THEN result_1

WHEN condition_2 THEN result_2

[WHEN ...]

[ELSE else_result]

END

CASE expression

WHEN value_1 THEN result_1

WHEN value_2 THEN result_2

[WHEN ...]

ELSE

else_result

END;

PostgreSQL
DATE Functions

▪ Get the current date:

▪ To output a date value in a specific format, you use
the TO_CHAR() function.

▪ The TO_CHAR() function accepts two parameters: the first
parameter is the value that you want to format, and the second one
is the template that defines the output format.

▪ For example, to display the current date in dd/mm/yyyy format,
you use the following statement:

SELECT NOW()::date; SELECT CURRENT_DATE;OR

SELECT TO_CHAR(NOW()::DATE, 'dd/mm/yyyy');

▪ Or to display a date in the format like Jun 22, 2016, you use the
following statement:

SELECT TO_CHAR(NOW() :: DATE, 'Mon dd, yyyy');

PostgreSQL
DATE Functions

▪ To get the interval between two dates, you use the
minus (-) operator.

▪ The following example gets service days of employees
by subtracting the values in the hire_date column from
today’s date:

SELECT first_name, last_name, now() - hire_date as diff

FROM employees;

PostgreSQL
DATE Functions

▪ To calculate age at the current date in years, months,
and days, you use the AGE() function.

▪ The following statement uses the AGE() function to
calculate the ages of employees in the employees table.

SELECT employee_id, first_name, last_name, AGE(birth_date)

FROM employees;

PostgreSQL
DATE Functions

▪ To get the year, quarter, month, week, day from a date
value, you use the EXTRACT() function.

▪ The following statement extracts the year, month, and
day from the birth dates of employees:

SELECT employee_id, first_name, last_name,

EXTRACT (YEAR FROM birth_date) AS YEAR,

EXTRACT (MONTH FROM birth_date) AS MONTH,

EXTRACT (DAY FROM birth_date) AS DAY

FROM employees;

