Database Management

Systems.

Lecture 3

SQL DML

SQL DQL

Functions

Content:

Filtering Data

Conditional Expressions & Operators

SQL DML

The SQL commands that deals with the manipulation of data
present in the database belong to DML or Data Manipulation
Language and this includes most of the SQL statements.

It is the component of the SQL statement that controls access to
data and to the database.

SQL DML commands:
INSERT - is used to insert data into a table.
UPDATE - is used to update existing data within a table.

DELETE - is used to delete records from a database table.

= The INSERT statement of SQL is used to insert a new
row in a table. There are two ways of using INSERT
statement for inserting rows:

= Only values: First method is to specify only the value of data
to be inserted without the column names

« INSERT INTO VALUES (valuel, value?2
INSERT : '

value V .
values of first column, second column, etc...
STATEMENT name of the table 7

» Column names and values both: In the second method we will

specify both the columns which we want to fill and their

corresponding.values as shown below:

= INSERT INTO (column ,

column3, ..) VALUES (valuel, value2, value3,..);

column2z,

INSERT multiple
roOws

= To insert multiple rows in a table using Single SQL Statement:

INSERT INTO

table name (Columnl,Column2,Column3,.......)

VALUES (Valuel, Value?2,Value3,.....),
(Valuel, ValueZ2,Value3,.....),
(Valuel, ValueZ?2,Value3,.....) ;

Using SELECT in

INSERT INTO
Statement

We can use the SELECT statement with INSERT INTO statement
to copy rows from one table and insert them into another table.

The use of this statement is like that of INSERT INTO statement.

The difference is that the SELECT statement is used here to select
data from a different table.

The different ways of using INSERT INTO SELECT statement are
shown below:

Inserting all columns of a table. We can copy all the data of
a table and insert into in a different table:

INSERT INTO first table SELECT * FROM
second table;

Inserting specific columns of a table. We can copy only those
columns of a table which we want to insert into in a different table:

INSERT INTO first table(names of columnsl) SELECT
names of columns2 FROM second table WHERE
condition;

_ = The UPDATE statement in SQL is used to update the
data of an existing table in database.
= We can update single columns as well as multiple
columns using UPDATE statement as per our

U P D AT E requirement.

State me nt = Basic syntax:

UPDATE table name

SET columnl = valuel, column?2 = valueZ2, ...

WHERE condition;

= Sometimes, you need to update data in a table based on
values in another table. In this case, you can use the

_ PostgreSQL UPDATE join syntax as follows:

UPDATE tablel

SET tablel.columnl = new value

UPDATE JOIN

WHERE tablel.column? = table?.column?2?;

= The DELETE Statement in SQL is used to delete
existing records from a table.

_ = We can delete a single record or multiple records
depending on the condition we specify in the WHERE

clause.

= Basic syntax:

DELETE
DELETE FROM table name
Statement WHERE some condition;

= Delete all the records:

= DELETE FROM table name ;

DELETE JOIN

= PostgreSQL doesn’t support the DELETE

JOIN statement.

= However, it does support the USING clause in
the DELETE statement that provides similar functionality

as the DELETE JOIN.

DELETE FROM table namel
USING table expression
WHERE condition

RETURNING returning columns;

DELETE FROM t1
USING t2

WHERE tl.id = t2.1id

SQL DQL:

SELECT
statement

SELECT is the most used statement in SQL.

The SELECT Statement in SQL is used to retrieve or
fetch data from a database.

We can fetch either the entire table or according to
some specified rules.

The data returned is stored in a result table.

This result table is also called result-set.

= Basic syntax:

SELECT columnl, columnZ FROM table name;

= To fetch the entire table or all the fields in the table:

= SELECT * FROM table name;

= Alias allows you to assign a column(s) or table(s) in the
select list of a SELECT statement temporary name(s).

_ = The alias exists temporarily during the execution of the
query.

SELECT column name AS column alias

COlumn and FROM table name AS table alias;
Table Aliases OR

SELECT column name column alias

FROM table name table alias;

= Column aliases that contain spaces:

SELECT column name “column alias”

FROM table name table alias;

= When you query data from a table, the SELECT statement returns
rows in an unspecified order. To sort the rows of the result set, you
use the ORDER BY clause in the SELECT statement.

= The ORDER BY clause allows you to sort rows returned by
a SELECT clause in ascending or descending order based on a
sort expression.

= The following illustrates the syntax of the ORDER BY clause:

SELECT select list

PostgreSQL FROM table name
sort expressionl [ASC | DESC],
O R D E R BY ORDER BY t exp

sort expressionN [ASC | DESC];

PostgreSQL evaluates the clauses in the SELECT statment
in the following order: FROM, SELECT, and ORDER BY:

N

‘ FROM SELECT | ORDER BY

= In the database world, NULL is a marker that indicates
the missing data or the data is unknown at the time of
recording.

= When you sort rows that contains NULL, you can specify
the order of NULL with other non-null values by using
the NULLS FIRST or NULLS LAST option of the ORDER
PostgreSQL 5% claae

ORDER BY ORDER BY sort expresssion [ASC | DESC] [NULLS FIRST | NULLS LAST]

clause and

N U L L = The NULLS FIRST option places NULL before other
non-null values and the NULL LAST option
places NULL after other non-null values.

= If you use the ASC option, the ORDER BY clause uses
the NULLS LAST option by default.

PostgreSQL

SELECT
DISTINCT

The DISTINCT clause is used in the SELECT statement to
remove duplicate rows from a result set.

The DISTINCT clause keeps one row for each group of
duplicates. The DISTINCT clause can be applied to one or
more columns in the select list of the SELECT statement.

The following illustrates the syntax of the DISTINCT clause:

SELECT DISTINCT columnl

FROM table_name;

If you specify multiple columns, the DISTINCT clause
will evaluate the duplicate based on the combination of
values of these columns.

SELECT DISTINCT columnl, column?2

FROM table name;

PostgreSQL
WHERE

The SELECT statement returns all rows from one or more columns
in a table.

To select rows that satisfy a specified condition, you use
a WHERE clause:

SELECT select list
FROM table name
WHERE condition

ORDER BY sort expression

The WHERE clause appears right after the FROM clause of
the SELECT statement.

The WHERE clause uses the condition to filter the rows returned
from the SELECT clause.

The condition must evaluate to true, false, or unknown. It can be a
boolean expression or a combination of boolean expressions
using the AND and OR operators.

PostgreSQL evaluates the WHERE clause after the FROM clause
and before the SELECT and ORDER BY clause:

FROM |

WHERE | SELECT ORDER BY

\

Operator Description

= Equal
> Greater than
< Less than

O p e rato rS i n SRS Greater than or equal
WHERE Clause <= Less than or equal

<> Not equal. Note: In some versions of SQL this operator may be written as !'=
BETWEEN Between a certain range
LIKE Search for a pattern

IN To specify multiple possible values for a column

= You use IN operator in the WHERE clause to check if a
value matches any value in a list of values.

_ = The syntax of the IN operator is as follows:

SELECT select list works like ”equal” Sigl’l (=)
FROM table name

WHERE condition @valuel,valueZ, o)

ORDER BY sort expression

PostgreSQL IN

= You can combine the IN operator with the NOT operator
to select rows whose values do not match the values in
the list.

SELECT select list yyorks like “not equal” sign (<>)

FROM table name ’/””f,,,,———’””"
WHERE condition (valuel,value?2, ...)

ORDER BY sort expression

= You use the BETWEEN operator to match a value
against a range of values. The following illustrates the
syntax of the BETWEEN operator:

SELECT select list

WHERE wvalue BETWEEN low AND highj;

ORDER BY sort expression

= If the value is greater than or equal to the low value

P O St g e S Q I_ and less than or equal to the high value, the
B ETW E E N expression returns true, otherwise, it returns false.

= If you want to check if a value is out of a range, you

combine the NOT operator with
the BETWEEN operator as follows:

SELECT select list
FROM table name

WHERE value NOT BETWEEN low AND
high;

ORDER BRY sort pyproqqimn

PostgreSQL LIKE
and NOT LIKE

The PostgreSQL (NOT) LIKE operator is used to match text
values against a pattern using wildcards. If the search
expression can be matched to the pattern expression, the
LIKE operator will return true, which is 1.

There are two wildcards used in conjunction with the LIKE
and NOT LIKE operators:

The percent sign (%) - represents zero, one, or multiple
numbers or characters.

The underscore (_) - represents a single number or
character.

These symbols can be used in combinations.

SELECT FROM table name

WHERE column (NOT)LIKE 'SXXX%';

OR
SELECT FROM table name

WHERE column (NOT)LIKE ' XXX ’;

= In the database world, NULL means missing information or not
applicable.

= NULL is not a value; therefore, you cannot compare it with any
other values like numbers or strings.

= The comparison of NULL with a value will always result in NULL,
which means an unknown result.

= In addition, NULL is not equal to NULL, so the following
expression returns NULL: NULL = NULL;

PostgreSQL IS
N U I_ I_ NULL operator instead:

» To check whether a value is NULL or not, you use the IS

SELECT select list

FROM table name

WHERE wvalue IS NULL;

= To check if a value is not NULL, you use the IS NOT
NULL operator:

SELECT select list
FROM table name

WHERE wvalue IS NOT NULL;

PostgreSQL
LIMIT

PostgreSQL LIMIT is an optional clause of the SELECT statement
that constrains the number of rows returned by the query.

The following illustrates the syntax of the LIMIT clause:

SELECT select list
FROM table name

ORDER BY sort expression

LIMIT row count

The statement returns row_count rows generated by the query.
If row_count is zero, the query returns an empty set.

In case row_count is NULL, the query returns the same result set
as it does not have the LIMIT clause.

In case you want to skip a number of rows before returning
the row_count rows, you use OFFSET clause placed after
the LIMIT clause as the following statement:

SELECT select list
FROM table name

ORDER BY sort expression

LIMIT row count OFFSET rows to skip

= To constrain the number of rows returned by a query, you often use
the LIMIT clause. The LIMIT clause is widely used by many
relational database management systems such as MySQL, H2, and

_ HSQLDB. However, the LIMIT clause is not a SQL-standard.

= To conform with the SQL standard, PostgreSQL supports
the FETCH clause to retrieve a few rows returned by a query. Note
that the FETCH clause was introduced in SQL:2008.

= The following illustrates the syntax of the
P O St g re S Q L PostgreSQL FETCH clause:

FETCH

SELECT select list

FROM table name
ORDER BY sort expression
OFFSET start { ROW | ROWS }

FETCH { FIRST | NEXT } [row count] { ROW | ROWS } ONLY

= In PostgreSQL, a sequence is a special kind of database
object that generates a sequence of integers. A
sequence is often used as the primary key column in a
table.

_ = When creating a new table, the sequence can be

created through the SERIAL pseudo-type as follows:

POStgrESQL CREATE TABLE table name (

id SERIAL);

SERIAL

dain d PostgreSQL performs the following:

SEQUENCE

By assigning the SERIAL pseudo-type to the id column,

= First, create a sequence object and set the next value
generated by the sequence as the default value for the
column.

= Second, add a NOT NULL constraint to the id column
because a sequence always generates an integer, which is a
non-null value.

= Third, assign the owner of the sequence to the id column; as
a result, the sequence object is deleted when the id column
or table is dropped

= By definition, a sequence is an ordered list of integers. The orders
of numbers in the sequence are important. For
example, {1,2,3,4,5} and {5,4,3,2,1} are entirely different

= A sequence in PostgreSQL is a user-defined schema-bound

object that generates a sequence of integers based on a specified

P O St g r e S QL specification.

= To create a sequence in PostgreSQL, you use the CREATE
SEQUENCE statement:

SERIAL

and CREATE SEQUENCE [IF NOT EXISTS] sequence name
[AS { SMALLINT | INT | BIGINT }]

SEQU ENCE [INCREMENT [BY] increment]

[MINVALUE minvalue | NO MINVALUE]

[MAXVALUE maxvalue | NO MAXVALUE]
[START [WITH] start] [CACHE cache]

[[NO] CYCLE]

[OWNED BY { table name.column name | NONE }]

= Behind the scenes, the following statement:

CREATE TABLE table name (

P O St g re S Q I_ * is equivalent to the following statements:

id SERIAL);

SERIAL

and CREATE SEQUENCE table name id seq;

SEQUENCE

CREATE TABLE table name (

id integer NOT NULL DEFAULT nextval ('table name id seq'));

ALTER SEQUENCE table name id seqg OWNED BY table name.id;

= To concatenate two or more strings into one, you use the
string concatenation operator | | as the following
example:

SELECT ‘Hello' || " ' || ‘World' AS

result string;

PostgreSQL
Built-in

F un Ct IONS. = The following statement concatenates a string with

CONCAT a NULL value:

SELECT 'Concat with ' || NULL AS result string;

= The CONCAT function accepts a list of arguments.

= The argument needs to be convertible to a string.

_ = A string in this context means any of the following data

types: char, varchar, or text.

P O St g re S Q I_ = Unlike the concatenation operator | |,

. . the CONCAT function ignores NULL arguments.
Built-in

FU nCtiOnSZ SELECT CONCAT (strl, str2);
CONCAT

= Besides the CONCAT function, PostgreSQL also provides
you with the CONCAT_ WS function that concatenates strings
into one separated by a particular separator.

= By the way, WS stands for with separator.

SELECT CONCAT WS (separator, strl, str2);

= The length function accepts a string as a parameter. A string can
be any of the following data types:

= character or char

P O St g re S Q I_ = character varying or varchar
LENGTH " tex

. = The length function returns the number of characters in the string.
Function

SELECT LENGTH (string) ;

= There are many cases that you want to convert a value
of one data type into another. PostgreSQL provides you

with the CAST operator that allows you to do this.
_ = The following illustrates the syntax of type CAST:

CAST (expression AS target type);

PostgreSQL CAS
T Ope rator = In this syntax:

= First, specify an expression that can be a constant, a table
column, an expression that evaluates to a value.

= Then, specify the target data type to which you want to
convert the result of the expression.

_ = Besides the type CAST syntax, you can use the following

syntax to convert a value of one type into another:

POStgFESQL CAS expression: :type;
T OperatOr SELECT '100'::INTEGER,

'01-0CT-2015"::DATE;

_ = The PostgreSQL CASE expression is the same

as IF/ELSE statement in other programming languages.

= It allows you to add if-else logic to the query to form a
powerful query.

PostgreSQL

CAS E places where an expression can be used e.qg.,SELECT,
WHERE, GROUP BY, or HAVING clause.

= Since CASE is an expression, you can use it in any

= The CASE expression has two forms: general and

simple form.

PostgreSQL
CASE

= The following illustrates the general form of the CASE statement:

CASE
WHEN condition 1 THEN result 1
WHEN condition 2 THEN result 2
[WHEN ...]

[ELSE else result]

END

= Simple PostgreSQL CASE expression:

CASE expression
WHEN value 1 THEN result 1
WHEN value 2 THEN result 2
[WHEN ...]

ELSE
else result

END;

PostgreSQL
DATE Functions

= Get the current date:

SELECT NOW () : :date; OR | SELECT CURRENT DATE;

To output a date value in a specific format, you use
the TO_CHAR() function.

The TO_CHAR() function accepts two parameters: the first
parameter is the value that you want to format, and the second one
is the template that defines the output format.

For example, to display the current date in dd/mm/yyyy format,
you use the following statement:

SELECT TO CHAR(NOW () : :DATE, 'dd/mm/yyyy'):;

Or to display a date in the format like Jun 22, 2016, you use the
following statement:

SELECT TO CHAR(NOW() :: DATE, 'Mon dd, yyyy'):

= To get the interval between two dates, you use the
minus (-) operator.

= The following example gets service days of employees
by subtracting the values in the hire_date column from

today’s date:

SELECT first name, last name, now() - hire date as diff

PostgreSQL
DATE Functions

FROM employees;

first name | last name |

Shannon Freeman | 4191 days 08:25:30.634458
Sheila Wells | 4922 days 08:25:30.634458
Ethel Webb | 5652 days 08:25:30.634458

(3 rows)

= To calculate age at the current date in years, months,
and days, you use the AGE() function.

_ = The following statement uses the AGE() function to
calculate the ages of employees in the employees table.

SELECT employee 1d, first name, last name, AGE (birth date)

POStgFESQL FROM employees;
DATE Functions

employee id | first name | last_name | age

Shannon Freeman | 36 years 5 mons 22 days

Sheila Wells | 38 years 4 mons 18 days
Ethel Webb | 41 years 5 mons 22 days

= To get the year, quarter, month, week, day from a date
value, you use the EXTRACT() function.

= The following statement extracts the year, month, and
day from the birth dates of employees:

SELECT employee 1d, first name, last name,

PostgreSQL EXTRACT (YEAR FROM birth date) AS YEAR,
o EXTRACT (MONTH FROM birth date) AS MONTH,
DATE Functions -

EXTRACT (DAY FROM birth date) AS DAY

FROM employees;

employee id | first name | last name | year | month | day

Shannon Freeman
Sheila Wells
Ethel Webb

