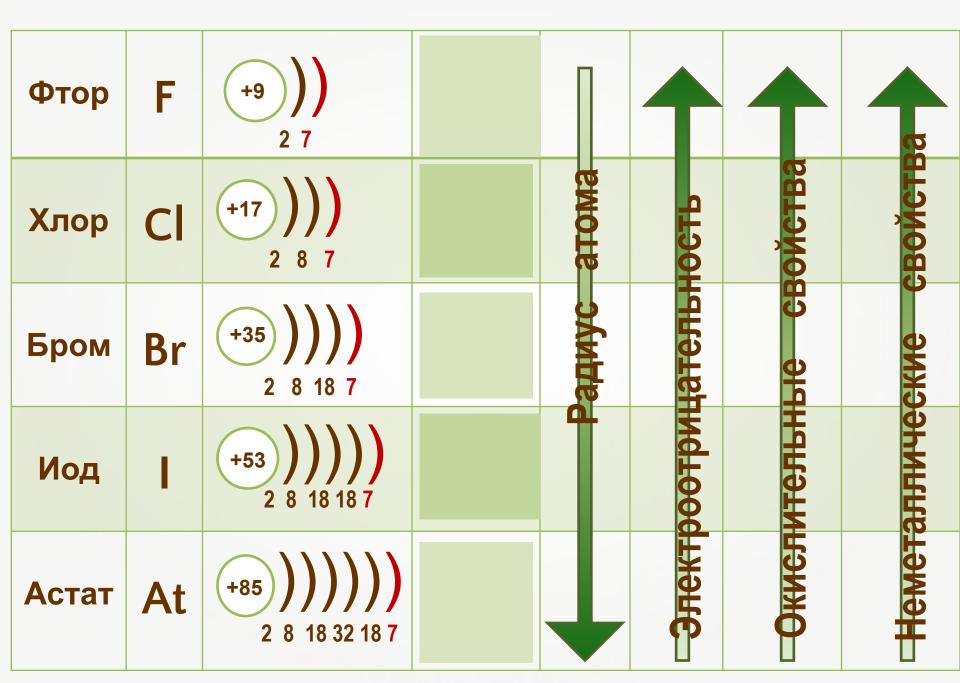
VII a 9 ФТОР 18.998 17 **ХЛОР** 35,453 35 Br БРОМ 79.904 53 **ИОД** 126,905 85 ACTAT 210

ГАЛОГЕНЫ



Общая характеристика элементов VIIa группы

От F к At (сверху вниз в периодической таблице) происходит:

- •увеличение: атомного радиуса, металлических, основных, восстановительных свойств;
- уменьшение: электроотрицательности, энергии ионизации, сродства к электрону. Все галогены относятся к неметаллам.
- •Атомы галогенов на внешнем энергетическом уровне имеют 7 электронов и до его завершения им не хватает 1 электрона.
- •У фтора характерная степень окисления = -1;
- •Остальные галогены могут проявлять значения степени окисления = +1, +3, +5, +7
- •Электронные конфигурации имеют общую формулу ns^2np^5 :
- ${ullet} F 2s^2 2p^5$
- \cdot Cl $3s^23p^5$
- •Br $4s^24p^5$
- ${f \cdot} {
 m I}$ $5{
 m s}^2 5{
 m p}^5$
- •At $6s^26p^5$
- •Активность галогенов убывает: $F \to Cl \to Br \to I$.

Сравнение окислительных

Фтор	F	+9)) ← e ⁻		свойства	свойства
Хлор	Cl	(+17))) ←e ⁻		PIE CBO	1ческие св
Бром	Br	(+35)))) ←e ⁻ 2 8 18 7	<u>a</u>	тительн	
Иод		+53)))))—e ⁻	с атома	Окист	Hewera
Астат	At	+85))))))—e ⁻ 2 8 18 32 18 7	Радиус		

Физические свойства

Галогены (греч. hals - соль + genes - рождающий) - химические элементы VIIa группы: F, Cl, Br, I, At.

Вещество	Агрегатное состояние при обычных условиях	Цвет	Запах
$\Phi_{ ext{TOP}}$ F_2	Газ, не сжижается при обычной температуре	Светло-жёлтый	Резкий, раздражающий
$egin{aligned} \mathbf{X}\mathbf{лop} \\ \mathbf{Cl}_2 \end{aligned}$	Газ, сжижающийся при обычной температуре	Жёлто-зелёный	Резкий, удушливый
${f Bpom} \ {f Br}_2$	Жидкость	Буровато- коричневый	Резкий, зловонный
$egin{array}{ll} \end{array} ext{Voд} & \end{array} ext{Tbëpdoe} \end{array}$ $\end{array} ext{Eupertse}$		Чёрно- фиолетовый с металлическим отблеском	Резкий

Бромная вода

Природные соединения

- NaCl галит (каменная соль)
- Са \mathbf{F}_2 флюорит, плавиковый шпат
- NaCl*KCl сильвинит
- $3Ca_3(PO_4)_2*CaF_2$ фторапатит
- MgCl₂*6H₂O бишофит
- KCl*MgCl₂*6H₂O карналлит
- Простые вещества \mathbf{F}_2 , \mathbf{Cl}_2 , \mathbf{Br}_2 , \mathbf{I}_2

Получение

• В промышленности: электролизом водных растворов и расплавов их солей.

$$2\mathrm{NaCl} + 2\mathrm{H}_2\mathrm{O} \rightarrow 2\mathrm{NaOH} + \mathrm{H}_2\uparrow + \mathrm{Cl}_2\uparrow$$

$$\underbrace{CaF}_{2}^{^{+2}}\overset{^{-1}}{\longrightarrow}\overset{^{0}}{C}a+\overset{^{0}}{F}_{2}\uparrow$$

$$2KBr + Cl_2 = 2KCl + Br_2$$

 $2NaI + Cl_2 = 2NaCl + I_2$

• В лабораторных условиях: $4HCl + MnO_{2} \rightarrow MnCl_{2} + Cl_{2} + 2H_{2}O$

Химические свойства фтора

С простыми веществами:

С МЕталлами

$$2\text{Na} + \text{F}_2 \rightarrow 2\text{NaF}$$
 $\text{Mo} + 3\text{F}_2 \rightarrow \text{MoF}_6$

С Неметаллами

$$H_2 + F_2 \rightarrow 2HF$$

 $Xe + 2F_2 \rightarrow XeF_4$

Со сложными веществами:

Вода горит во фторе фиолетовым пламенем

$$2H_2O + F_2 \rightarrow 4HF + O_2$$

$$2KCl + F_2 \rightarrow Cl_2 + 2NaF$$

$$2KBr + F_2 \rightarrow Br_2 + 2KF$$

$$2KI + F_2 \rightarrow I_2 + 2KF$$

Фтор вытесняет любой галоген из соли

Химические свойства хлора

С простыми веществами:

С МЕталлами

$$2Fe + 3Cl2 \rightarrow 2FeCl3$$

$$Cu + Cl2 \rightarrow Cu Cl2$$

Горение железа в хлоре

$$H_2 + Cl_2 \rightarrow 2HCl \ (t^{\circ}, hv)$$

2P + $5Cl_2 \rightarrow 2PCl_5 \ (t^{\circ}, B изб. Cl_2)$

Со сложными веществами:

$$H_2O + Cl_2 \rightarrow HCl + HClO$$
 $2NaOH + Cl_2 \rightarrow NaOCl + NaCl + H_2O$ жавелевая вода $2KBr + Cl_2 \rightarrow Br_2 + 2KCl$ $2KI + Cl_2 \rightarrow I_2 + 2KCl$

Хлор отбеливает ткани за счет атомарного кислорода, выделяемого из HCIO

Химические свойства брома

С простыми веществами:

С МЕталлами

$$\begin{array}{c} 2\mathrm{Fe} + 3\mathrm{Br}_2 \, \to \, 2\mathrm{FeBr}_3 \\ \mathrm{Cu} \, + \mathrm{Br}_2 \, \to \mathrm{Cu} \, \mathrm{Br}_2 \end{array}$$

С НЕметаллами

$$H_2 + Br_2 \rightarrow 2HBr$$

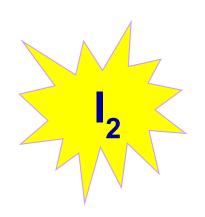
 $2P + 5Br_2 \rightarrow 2PBr_5$

Со сложными веществами:

$$Br_2 + H_2O \rightarrow HBr + HBrO$$

 $2KI + Br_2 \rightarrow I_2 + 2KCl$

Чаще чем фтор и хлор используется в органическом синтезе


Обладает высокой селективностью (избирательностью)

Химические свойства йода

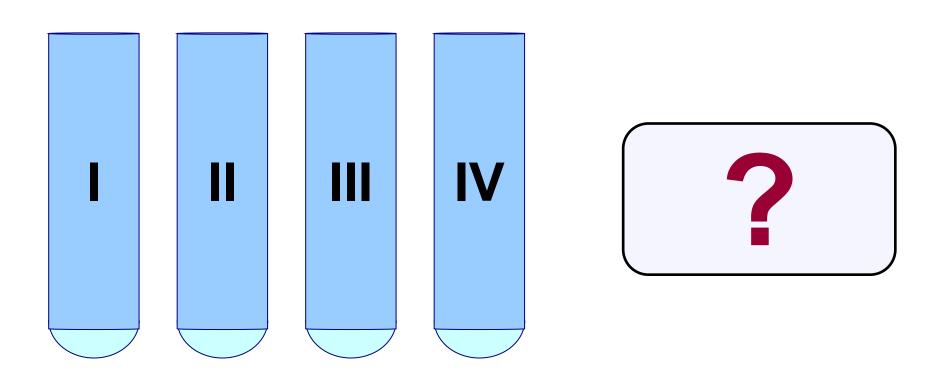
С простыми веществами:

С металлами

$$Hg + I_2 \rightarrow HgI_2$$

 $2Al + 3I_2 \rightarrow 2AlI_3$

С неметаллами

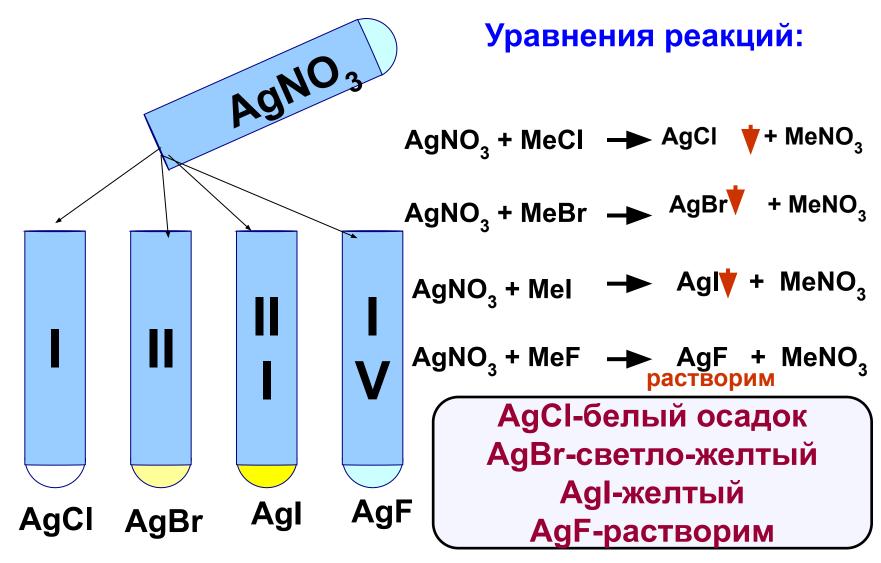

$$H_2 + I_2 \rightarrow 2HI (t^o)$$

 $2P + 3Br_2 \rightarrow 2PI_3$

Со сложными веществами:

 $I_2^- + H_2^- O \to HI + HIO$ (практически не идет) $I_2^- + p$ -р крахмала \to темно-синее окрашивание Окисляется конц. серной и азотной кислотами

Определение галогенид-ионов


Определить в какой пробирке находится раствор хлорида, бромида, иодида, фторида

Определение галогенид-ионов

Добавим нитрат серебра.

Соединения галогенов

Галогеноводороды — бесцветные газы, с резким запахом, токсичны.

$$\begin{aligned} & H_2 + F_2 = 2HF \\ & H_2 + Cl_2 = 2HCl \\ & H_2 + Br_2 = 2HBr \\ & H_2 + I_2 = 2HI \end{aligned}$$

HF	фтороводородная (плавиковая) кислота	
HCl	хлороводородная (соляная) кислота	
HBr	бромоводородная кислота	
HI	йодоводородная кислота	

Восстановительные свойства ионов

• Ионы галогенов являются типичными восстановителями

$$^{-1}$$
 2Hal $^{-}$ 2e \rightarrow Hal $_{2}$

- С водородом галогены образуют летучие водородные соединения
- Устойчивость галогеноводородов уменьшается в ряду:

• Сила галогеноводородных кислот увеличивается в ряду:

F Скелет, зубы СІ Кровь, желудочный сок

Биологическое значение

Br Регуляция нервных процессов

Регуляция обмена веществ Тефлон (посуда)

Применение фтора

Заменитель крови

Окислитель ракетного топлива Фториды в зубных пастах

Дезинфекция воды **Органические** растворители

Отбеливатели

Лекарственные препараты

Применение **хлора**

Хлорирование органических веществ

Производство НСІ Получение неорганических хлоридов

Получение брома, йода

Лекарственные препараты

Фотография

Ветеринарные препараты

Применение **брома**

Красители

Присадки к бензину

Ингибиторы коррозии **Лекарственные** препараты

AgI для создания искусственных осадков

Применение

йода

Красители

Фотография

Галогеновые электролампы