

- Растеризация это перевод изображения, описанного векторным форматом в пиксели или точки, для вывода на дисплей или принтер.
- Простейшие растровые алгоритмы:
- переведение идеального объекта (отрезка, окружности и др.) в их растровые образы;
- обработка растровых изображений.

Понятие связности

Определение связной области:

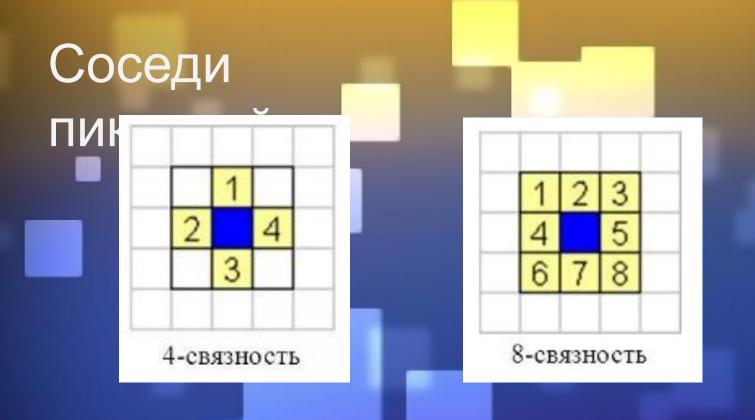
Множество пикселей, у каждого пикселя которого есть хотя бы один сосед, принадлежащий данному множеству.

• **8 – связность**, когда пикселы считаются соседними, если их **x** и **y** координаты отличаются не более чем на единицу, т.е.

$$|x_1 - x_2| + |y_1 - y_2| \le 1.$$

• **4 – связность**, когда пикселы считаются соседними, если либо их **x**, либо **y** координаты отличаются не более чем на единицу, т.е.

$$|x_1 - x_2| \le 1; |y_1 - y_2| \le 1.$$



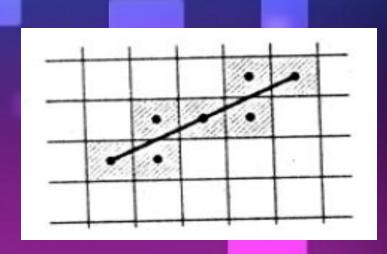
Понятие 4-связности является более сильным, чем 8-связность:

любые два 4-связных пиксела являются и 8-связными, но не наоборот

- Линией на растровой сетке выступает набор пикселов P_1, P_2, \dots, P_n , где любые два пиксела P_k, P_{k+1} являются соседними.
- Простые элементы, из которых складываются сложные объекты, будем называть графическими примитивами.
- Простейшим растровым графическим примитивом является **пиксел**.
- Сложными графическими примитивами являются линии и фигуры.

Задача построения растрового изображения отрезка, соединяющего точки (x_1, y_1) и (x_2, y_2) .

•
$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) = kx + b, x \in [x_1, x_2].$$

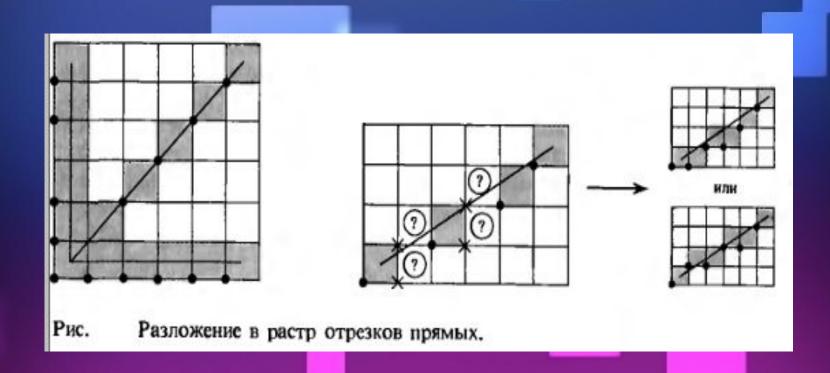


Простейший алгоритм растрового представления отрезка

Будем считать, что $0 \le y_2 - y_1 \le x_2 - x_1$

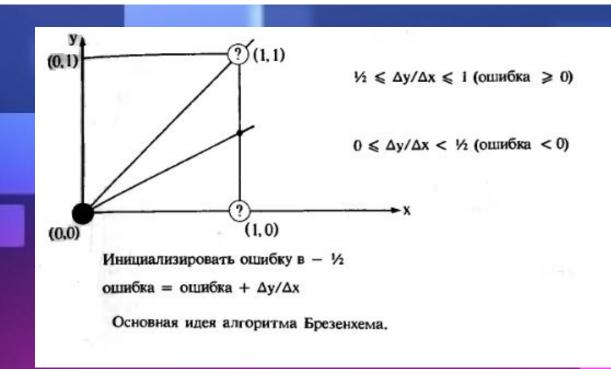
```
// File Line1.cpp
void Line (int x1, int y1, int x2,
int y2, int color )
double k =
((double)(y2-y1))/(x2-x1):
double b = y1 - k*x1;
for ( int x = x1; x \le x2; x++ )
putpixel (x, round (k*x + b),
color);
```


Процесс определения пикселов, наилучшим образом аппроксимирующих заданный отрезок, называется разложением в растр.

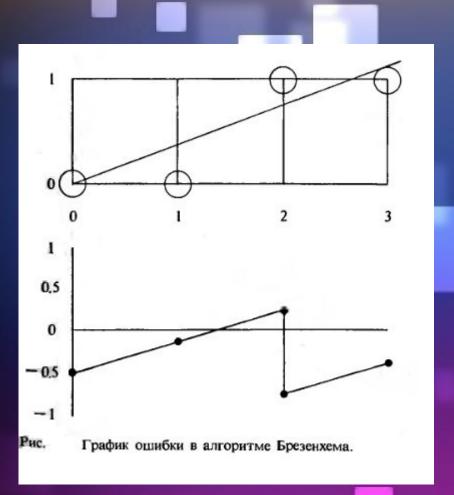


- В 1965 году Брезенхейм предложил простой целочисленный алгоритм для растрового построения отрезка, первоначально предназначенный для использования в графопостроителях.
- Алгоритм выбирает оптимальные растровые координаты для представления отрезка.
- В процессе работы одна из координат либо **x**, либо **y** изменяется на единицу.
- Изменение другой координаты (либо на нуль, либо на единицу) зависит от расстояния между действительным положением отрезка и ближайшими координатами сетки. Такое расстояние назовем ошибкой.

- Угловой коэффициент $k \in [0,1]$.
- Если $k \geq \frac{1}{2}$, то точка пересечения с прямой x=1 будет расположено ближе к прямой y=1, чем к прямой y=0.
- Следовательно, точка растра (1,1) лучше аппроксимирует ход отрезка, чем точка (1,0).
- Если $k < \frac{1}{2}$, то верно обратное.



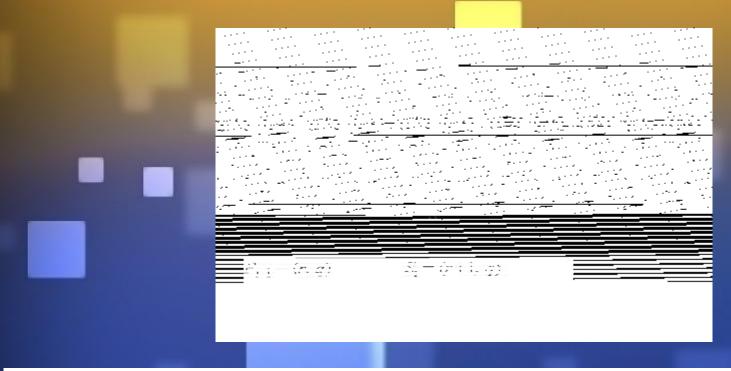
- Не все отрезки проходят через точки растра.
- На рис. иллюстрируется отрезок с $k = \frac{3}{8}$.



- Отрезок проходит через точку растра (0,0) и последовательно пересекает три пиксела.
- Также иллюстрируется вычисление ошибки при представлении отрезка дискретными пикселами.

Алгоритмы построения отрезка имеют ряд недостатков:

- 1. выполняют операции над числами с плавающей точкой, а желательно было бы работать с целочисленной арифметикой;
- 2. на каждом шаге выполняется операция округления, что также снижает быстродействие.



- Пиксель P_{i-1} уже найден как ближайший к реальному отрезку.
- Требуется определить, какой из пикселов (T_i или S_i) будет установлен следующим.
- В алгоритме используется управляющая переменная *d_i*, которая на каждом шаге пропорциональна разности между *S* и *T*.
- Если S < T, то S_i ближе к отрезку, иначе выбирается T_i .

- Пусть отрезок проходит из точки (x_1, y_1) в точку (x_2, y_2) .
- Исходя из начальных условий, точка (x₁, y₁) ближе к началу координат.
- Перенесем оба конца отрезка с помощью преобразования Т(-x₁, -y₁), так чтобы первый конец отрезка совпал с началом координат.
- Начальной точкой отрезка стала точка (0, 0), конечной точкой (dx, dy), где $dx = x_2 x_1$, $dy = y_2 y_1$

• Уравнение прямой
$$y = x \frac{dy}{dx}$$
.

- Обозначим $P_{i-1}(r, q)$.
- Тогда $S_i = (r+1, q)$ и $T_i = (r+1, q+1)$.
- Из подобия треугольников $\frac{dy}{dx} = \frac{S+q}{r+1}$.
- Тогда $S = \frac{dy}{dx}(r+1) q$.
- T = 1 S.
- $T = 1 \frac{dy}{dx}(r+1) + q$.
- $S-T=2\frac{dy}{dx}(r+1)-2q-1$.
- Поскольку $r = x_{i-1}$ и $q = y_{i-1}$, обозначим $d_i = dx$ (S T)
- $d_i = 2 x_{i-1} dy 2 y_{i-1} dx + 2 dy dx$.

- $d_i = 2 x_{i-1} dy 2 y_{i-1} dx + 2 dy dx$.
- $d_{i+1} = 2 x_i dy 2 y_i dx + 2 dy dx$.
- $d_{i+1} d_i = 2 \operatorname{dy} (x_i x_{i-1}) 2 \operatorname{dx} (y_i y_{i-1}).$
- Известно, что $x_i x_{i-1} = 1$, тогда
- $d_{i+1} d_i = 2 \text{ dy} 2 \text{ dx} (y_i y_{i-1}).$
- $d_{i+1} = d_i + 2 \text{ dy} 2 \text{ dx} (y_i y_{i-1})$ итеративная формула вычисления управляющего коэффициента d_{i+1} по предыдущему значению d_i .

• Если $d_i \ge 0$, тогда выбирается T_i и

$$y_i = y_{i-1} + 1$$
, $d_{i+1} = d_i + 2 (dy - dx)$.

• Если $d_i < 0$, тогда выбирается S_i и

$$y_i = y_{i-1}$$
 и $d_{i+1} = d_i + 2 dy$.

• Начальные значения d_1 с учетом того, что

$$(x_0, y_0) = (0, 0), d_1 = 2 dy - dx.$$

• Преимущество: для работы алгоритма требуются минимальные арифметические возможности: сложение, вычитание и сдвиг влево для

умножения на 2.

```
void MyLine(int x1, int y1, int x2, int y2, int c)
int dx, dy, inc1, inc2, d, x, y, Xend;
 dx = abs(x2 - x1);
 dy = abs(y2 - y1);
 d = dy << 1 - dx;
 inc1 = dy << 1;
 inc2 = (dy - dx) << 1;
 if (x1>x2)
  x = x2;
  y = y2;
  Xend = x1;
 else
  x = x1;
  y = y1;
  Xend = x2;
 putpixel(x, y, c);
 while (x < Xend)
  X++;
  if (d < 0) d = d + inc1;
   else
y++;
d = d + inc2;
  putpixel(x, y, c);
  };
```

Если dy > dx, то необходимо будет использовать этот же алгоритм, но пошагово увеличивая y и на каждом шаге вычислять x.

Методы устранения ступенчатости

Основная причина появления лестничного эффекта заключается в том, что отрезки, ребра многоугольника, цветовые границы и пр. имеют непрерывную природу, тогда как растровые устройства дискретны.

Лестничный эффект проявляется:

- 1) при визуализации мелких деталей;
- 2) при прорисовке ребер и границ;
- 3) при анимации мелких деталей.

Метод увеличения частоты выборки

- Каждый пиксель делится на **подпиксели** в процессе формирования растра более высокого разрешения.
- В некоторой степени можно получить лучшие результаты, если рассматривать больше подпикселов и учитывать их влияние с помощью весов при определении атрибутов.

Увеличение разрешения в два раза

+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+

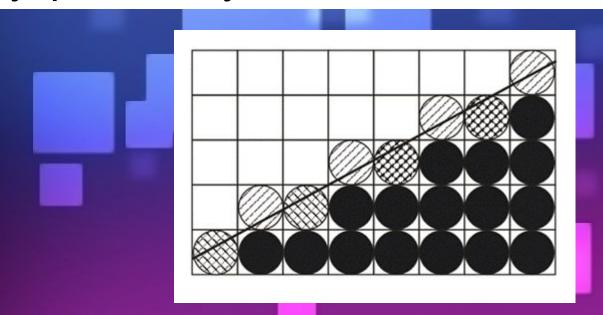
Увеличение разрешения в четыре раза

1	2	1
2	4	2
1	2	1

1	2	3	4	3	2	1
2	4	6	8	6	4	2
3	6	9	12	9	6	3
4	8	12	16	12	8	4
3	6	9	12	9	6	3
2	4	6	8	6	4	2
1	2	3	4	3	2	1

Метод, основанный на использовании полутонов

Интенсивность пикселя на ребре устанавливается пропорционально площади части пикселя, находящегося внутри многоугольника.



Растровое представление окружности

$$x^2 + y^2 = R^2$$

Генерируется 1/8 часть окружности.

Остальные ее части получаем последовательными отражениями.

Пусть центр окружности и начальная точка находятся точно в точках растра.

Выбираем генерацию по часовой стрелке с началом в точке x=0, y=R

у — монотонно убывающая функция аргумента х.

 m_H — горизонтально вправо,

 $m_D \,\,$ — по диагонали вниз и вправо,

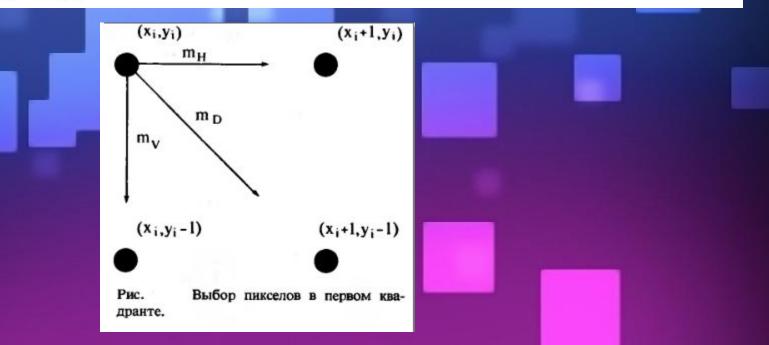
 $m_V \; - \;$ вертикально вниз.

$$m_H = |(x_i + 1)^2 + (y_i)^2 - R^2|$$

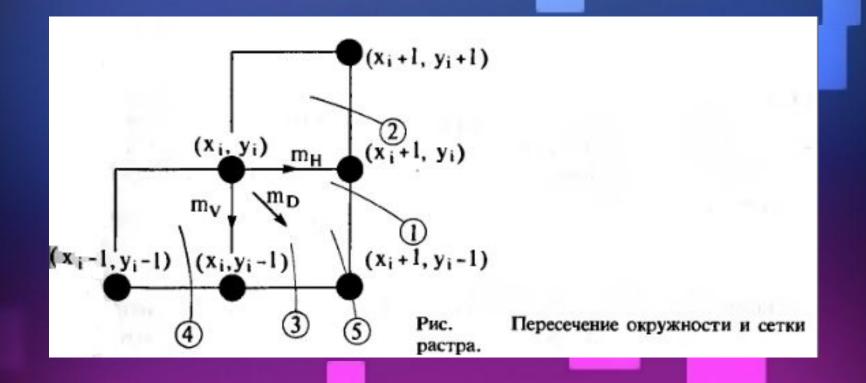
$$m_D = |(x_i + 1)^2 + (y_i - 1)^2 - R^2|$$

$$m_V = |(x_i)^2 + (y_i - 1)^2 - R^2|$$

Алгоритм выбирает пиксел соответствующий $\min\{m_{_H},m_{_D},m_{_V}\}.$



В окрестности точки (x_i, y_i) возможны только пять типов пересечений окружности и сетки растра

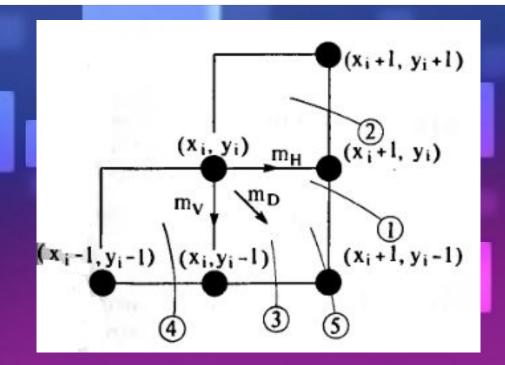


Qбозначим

$$\Delta_i = (x_i + 1)^2 + (y_i - 1)^2 - R^2$$

При $\Delta_i < 0$ диагональная точка $(x_i + 1, y_i - 1)$ находится внутри реальной окружности, т.е. это случаи 1 или 2.

Выбираем либо направление m_H (пиксел (x_i+1,y_i)), либо направление m_D (пиксел (x_i+1,y_i-1)).

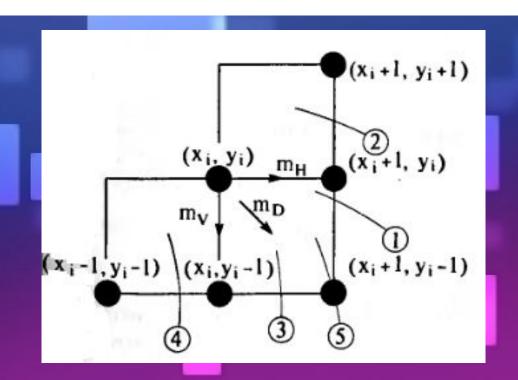


Вычислим

$$\delta = \left| (x_i + 1)^2 + (y_i)^2 - R^2 \right| - \left| (x_i + 1)^2 + (y_i - 1)^2 - R^2 \right|$$

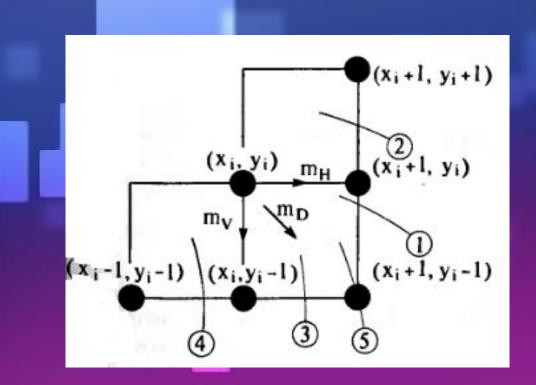
Если $\delta \leq 0$, то выбираем направление m_H (пиксел $(x_i + 1, y_i)$).

Если $\delta>0$, то выбираем направление m_D (пиксел (x_i+1,y_i-1)).



При $\Delta_i > 0$ диагональная точка $(x_i + 1, y_i - 1)$ находится вне окружности, т.е. это случаи 3 или 4.

Выбираем либо направление m_V (пиксел $(x_i, y_i - 1)$), либо направление m_D (пиксел $(x_i + 1, y_i - 1)$).

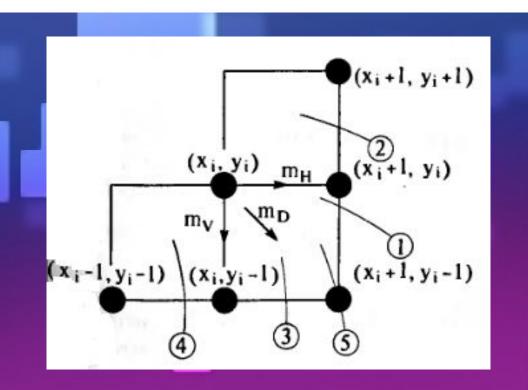


Вычислим

$$\delta' = \left| (x_i + 1)^2 + (y_i - 1)^2 - R^2 \right| - \left| (x_i)^2 + (y_i - 1)^2 - R^2 \right|$$

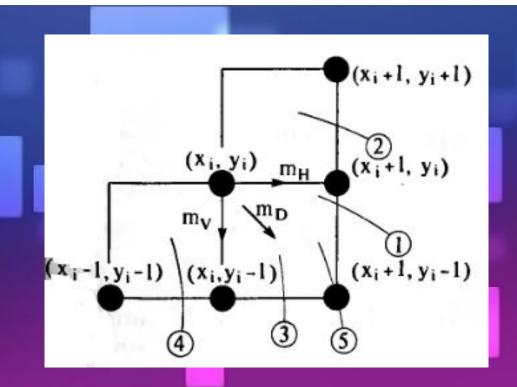
Если $\delta' \leq 0$, то выбираем направление m_D (пиксел (x_i+1,y_i-1)).

Если $\delta'>0$, то выбираем направление m_V (пиксел (x_i,y_i-1)).



При $\Delta_i = 0$ диагональная точка $(x_i + 1, y_i - 1)$ находится на реальной окружности, т.е. это случай 5.

В этой ситуации $\delta>0, \delta^{'}<0$, то выбираем направление m_D (пиксел (x_i+1,y_i-1)).



Векуррентные соотношения для реализации пошагового алгоритма:

направление m_H :

$$x_{i+1} = x_i + 1$$
, $y_{i+1} = y_i$, $\Delta_{i+1} = \Delta_i + 2x_{i+1} + 1$

направление m_D :

$$x_{i+1} = x_i + 1, y_{i+1} = y_i - 1,$$

 $\Delta_{i+1} = \Delta_i + 2x_{i+1} - 2y_{i+1} + 2$

направление m_V :

$$x_{i+1} = x_i, y_{i+1} = y_i - 1, \Delta_{i+1} = \Delta_i - 2y_{i+1} + 1$$

Окружность в І октанте сгенерирована.

II октант получается зеркальным отражением относительно прямой *y=x*.

Получаем І квадрант.

Отражаем полученную часть окружности относительно прямой *x=0*.

Получаем часть окружности во II квадранте.

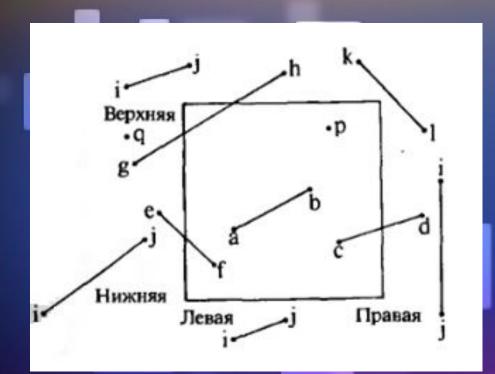
Верхнюю часть окружности отражаем относительно прямой *y=0*.

Получаем окружность.

Двумерные матриць соответствующих преобразований

Рис. Генерация полной окружности из дуги в первом октанте.

Отсечение отрезка. Алгоритм Сазерленда Кохена



Точки, лежащие внутри отсекающего окна, удовлетворяют условию:

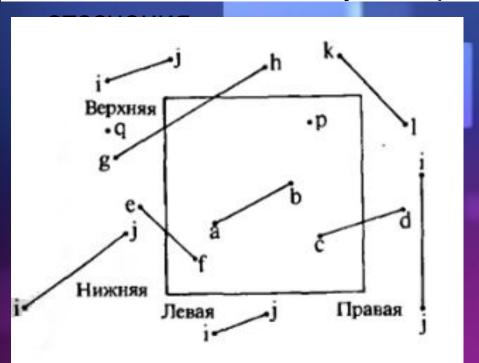
$$x_{\text{JI}} \le x \le x_{\text{II}}$$

 $y_{\text{H}} \le y \le y_{\text{B}}$

Цель алгоритма: определение тех точек отрезка, которые лежат внутри отсекающего

окна

- Отрезок называется **видимым** (лежащим внутри окна), если обе его концевые точки лежат внутри окна, например, отрезок ab.
- Если оба конца отрезка лежат справа, слева, выше или ниже окна, то этот отрезок называется **невидимым** (целиком лежит вне окна), например отрезок іј.
- Все остальные отрезки называются **частично видимыми** и к ним нужно применять алгоритмы



- для 1 бита если точка левее окна
- для 2 бита если точка правее окна
- для 3 бита если точка ниже окна
- для 4 бита если точка выше окна

1001	1000	1010
0001	Окно 0000	0010
0101	0100	0110

u	v	u∧v
0	0	0
0	1	0
1	0	0
1	1	1

Алгоритм Сазерленда – Коэна для произвольного отрезка P_1P_2

- Для каждого отрезка P₁P₂ определить, не является ли он полностью видимым или может быть тривиально отвергнут как невидимый.
- Если P_1 вне окна, то продолжить выполнение, иначе поменять P_1 и P_2 местами.
- Заменить P_1 на точку пересечения P_1P_2 со стороной окна.

Таблица Коды кон	цов отрезков		
Отрезок (рис. 3.1)	Коды концов (рис. 3.2)	Результаты логического умножения	Примечания
ab	0000 0000	0000	Целиком видим
Ü	0010 0110	0010	Целиком иевидим
	1001 1000	1000	_"_
ij ij ij	0101 0001	0001	"
ii	0100 0100	0100	-"-
cd	0000 0010	0000	Частично видим
ef	0001 0000	0000	_"_
gh	0001 1000	0000	_"_
kl	1000 0010	0000	Целиком иевидим

Пример

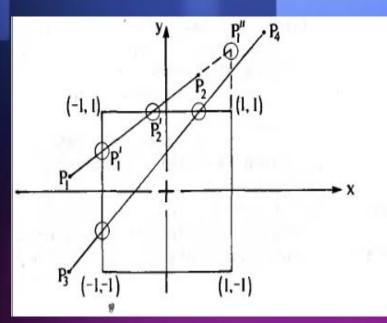
Қоординаты концевых точек
$$P_1\left(-\frac{3}{2},\frac{1}{6}\right)$$
, $P_2\left(\frac{1}{2},\frac{3}{2}\right)$, $P_3\left(-\frac{3}{2},-1\right)$, $P_4(\frac{3}{2},2)$. Окно $P=\{-1\leq x\leq 1,-1\leq y\leq 1\}$.

 P_1 : 0001, P_2 : 1000 \Longrightarrow P_1P_2 - частично видимым \Longrightarrow P_1 лежит вне окна.

Пересечение P_1P_2 с x=-1 в $P_1'(-1,\frac{1}{2})$.

Заменим точку P_1 на точку P_1' .

Отрезок P_1P_2 , где $P_1(-1,\frac{1}{2})$.



 $P_1 \colon 0000, P_2 \colon 1000 \Longrightarrow P_1 P_2$ - частично видимым $\Longrightarrow P_1$ лежит внутри окна \Longrightarrow меняем точки P_1, P_2 местами.

Отрезок P_1P_2 , где $P_1\left(\frac{1}{2},\frac{3}{2}\right)$, $P_2(-1,\frac{1}{2})$.

Пересечение P_1P_2 с y=1 в $P_1'(-\frac{1}{4},1)$.

Заменим точку P_1 на точку $P_1{}^\prime$.

Отрезок P_1P_2 , где $P_1(-\frac{1}{4},1)$.

 P_1 : 0000, P_2 : 0000 $\Longrightarrow P_1P_2$ - полностью видим.