

На предыдущей лекции №11 «Методики измерения и оценки параметров АЭУ образцов радиотехнических систем»

Были рассмотрены:

- 1. Методики измерения параметров аналоговых электронных устройств.
- 2. Методики измерения характеристик аналоговых электронных устройств.

Структура дисциплины в 4 семестре обучения

						Изп	их п	о вида	млие	бита	запа	тий	_		4	
Номера и наименование разделов и тем	Всего часов учебных занятий	В том числе учебных занятий с претодавателем	ग्रस्तामा	семинары	лабораторные работы	практические занятия	групповые упражнения	групповыезанятия	тактические ТСУ	КШУ, военные, игры	контрольные работы	курсовые работы (проекты, запачи)	самостоятельная работа под руководством преподава- теля	экзамен, зачеты	Время, отводимое на самостоятельную работу	
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
	OCHAN.	4 c	емест	р	шш	шш	77.1	18.00	100		111					
Введение (в рамках темы 1)			277	ш	۹,		m	000		UST.	12.3		1/2			
Тема 1. Общие сведения об аналоговых электронных устройствах	16	12	8	1	The same	4			200			IA		ζ,	4	
Тема 2. Схемотехника резисторных усилительных каскадов образцов радиотехнических систем	47	34	16		4	14									13	
Тема 3. Операционные усилители	9	6	2		2	2	1				1	Call C			3	
Тема 4. Схемотехника линейных и нелинейных аналоговых преобразователей		12	6		2	4	325	対は			10x =				6	
Заключение (в рамках темы 4)	OT A			E	F. J.	1.76	TTT	TITLE	γδ _s	1	100	100				
Зачет с оценкой		6						Ш	13		m			6	12	
Итого за 4 семестр		70	32		8	24		991			7			6	38	
Всего по дисциплине		70	32		8	24		H.						6	38	

Всего на дисциплину учебным планом отводится ____ 3 ___ зачетные единицы

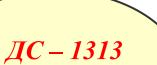
Содержание темы 2 «Схемотехника резисторных усилительных каскадов образцов радиотехнических систем»

Вид занятия	Время	Тема занятия
Лекция № 5	2	Схемотехника резисторных усилительных каскадов ОЭ.ОБ,ОИ образцов РТС
Пр. занятие №3	2	Расчет и анализ параметров усилительных каскадов ОЭ, ОБ, ОИ образцов РТС
Лекция № 6	2	Схемотехника повторителей напряжения каскадов образцов РТС
Пр. занятие № 4	2	Расчет и анализ параметров повторителей напряжения образцов РТС
Лаб <mark>. раб</mark> ота № 1	2	Экспериментальное исследование каскада предварительного усиления на биполярном гранзисторе
Лекция № 7	2	Методики расчета и оценки основных параметров АЭУ
Пр. занятие №5	2	Расчет и анализ параметров усилительных каскадов образцов РТС в разных частотных областях
Лекция № 8	2	Частотная коррекция усилителей образцов РТС
Пр. занятие №6	2	Расчет и анализ параметров каскадов усиления с коррекцией образцов РТС
Лекция № 9	2	Каскады усиления постоянного тока и многокаскадные усилители образцов РТС
Пр. занятие №7	Name	Расчет и анализ параметров УПТ и многокаскадных усилителей образцов РТС
Лекция № 10	No.	Базовые схемные конфигурации аналоговых интегральных схем образцов РТС
Пр. занятие №8	2111111111	Расчет и анализ параметров базовых схемных конфигураций аналоговых интегральных схем образцов РТС
Лаб. работа № 2		Экспериментальное исследование и измерение параметров многокаскадного усилителя
Лекция №11	77.14	Методики измерения и оценки параметров АЭУ образцов РТС
Лекция №12		Схемотехника оконечных каскадов образцов РТС
Пр. занятие № 9		Расчет и анализ параметров оконечных каскадов образцов РТС

Тема №2

Схемотехника резисторных усилительных каскадов образцов радиотехнических систем

Лекция №12:


«Схемотехника оконечных каскадов образцов радиотехнических систем»

ДС – 1314

«Электроника»

«Радиоматериалы и радиокомпоненты»/

AC - 1320

Тема № 2

ДС — 1315

«Основы теории цепей»

- •ОК и ТП РЭС;
- •УГ и ФС;
- •УП и ОС;
- •УП № 3.

Объекты профессиональной деятельности»

Оконечные каскады РЛС Гамма -ДЕ

Внешний вид АФАР РЛС РЛС 67Н6Е

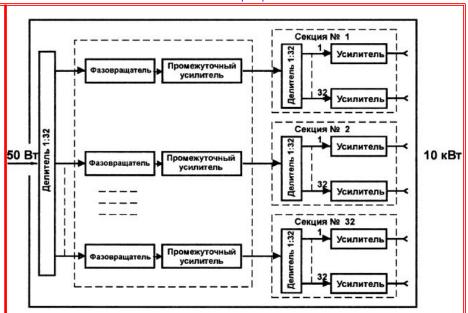
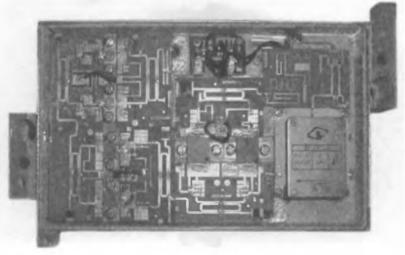
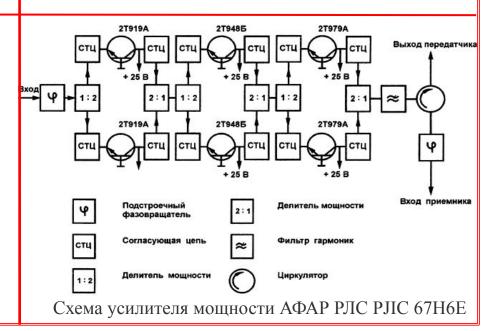




Схема АФАР РЈІС 67Н6Е

Общий вид усилителя мощности АФАР РЛС РЛС 67H6E

Формируемые компетенции:

- способностью учитывать в профессиональной деятельности современные тенденции развития электроники (ОПК-7);
- способностью собирать, обрабатывать, анализировать и систематизировать научно-техническую информацию в сфере профессиональной деятельности, использовать достижения отечественной и зарубежной науки, техники и технологии (ОПК-9);
- способностью проводить сбор, обработку, анализ, систематизацию научнотехнической информации, анализировать отечественный, зарубежный опыт в сфере профессиональной деятельности (ПК-11).

В результате обучения по дисциплине курсант должен:

а) в соответствии с требованиями ПООП

ЗНАТЬ:

• основы схемотехники аналоговых электронных устройств;

- дать режимы работы и параметры оконечных каскадов;
- фраскрыть типовые схемы и принцип функциониро-вания оконечных каскадов.

Jutepatypa

Основная

Павлов В.Н. Ногин В.Н. Схемотехника аналоговых электронных устройств. Учебник для ВУЗов М: Горячая линия — Телеком, 2001 с. 138-151 (Л.1/o)

Хаперский А.В. Схемотехника аналоговых электронных устройств. Учебное пособие. [Электронный ресурс].Учебное пособие. Тверь: ВА ВКО, 2016. URL:htpp://ibook. academy.org/# Эл.2/о. м.1.4.1, м.1.4.2.

Дополнительная

Опадчий Ю.Ф., Глудкин О.П., Гуров А.И. Аналоговая и цифровая электроника. (Полный курс). Учебник для ВУЗов. М: Горячая линия -Телеком 2000, 262-275,297-299. (Л.1/д)

ВОЕННАЯ АКАДЕМИЯ ВОЗДУШНО-КОСМИЧЕСКОЙ ОБОРОНЫ имени МАРШАЛА СОВЕТСКОГО СОЮЗА Г. К. ЖУКОВА

Вы здесь: Главная

Академия 🔻

Форум Фотоальбом Наука

Документы 🔻

Видео Новости Подразделения

ВПТГ і-Воок ЭИОС

Новости кафедр

- Международная военно-научная конференция 2-3 марта 2017
- 8 марта 2017 (торжественное собрание)
- Видео репортаж программа "Часовой" в честь юбилея академии 60 лет
- ▶ 60 лет ВА ВКО (торжественные мероприятия)
- День защитника отечества прохождение торжественным маршем 23.02.2017
- День защитника отечества поздравление губернатора 22 02 2017
- День защитника отечества (торжественное собрание 20.02.2017)
- День открытых дверей 18 февраля 2017
- Вестник изобретателя и рационализатора №15

Академия

1 марта 2017 года Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова отмечает свое шестидесятилетие.

Комплекс зданий, в которых размещена академия, неразрывно связан с историей не только города Твери, но и с историей подготовки защитников нашего Отечества.

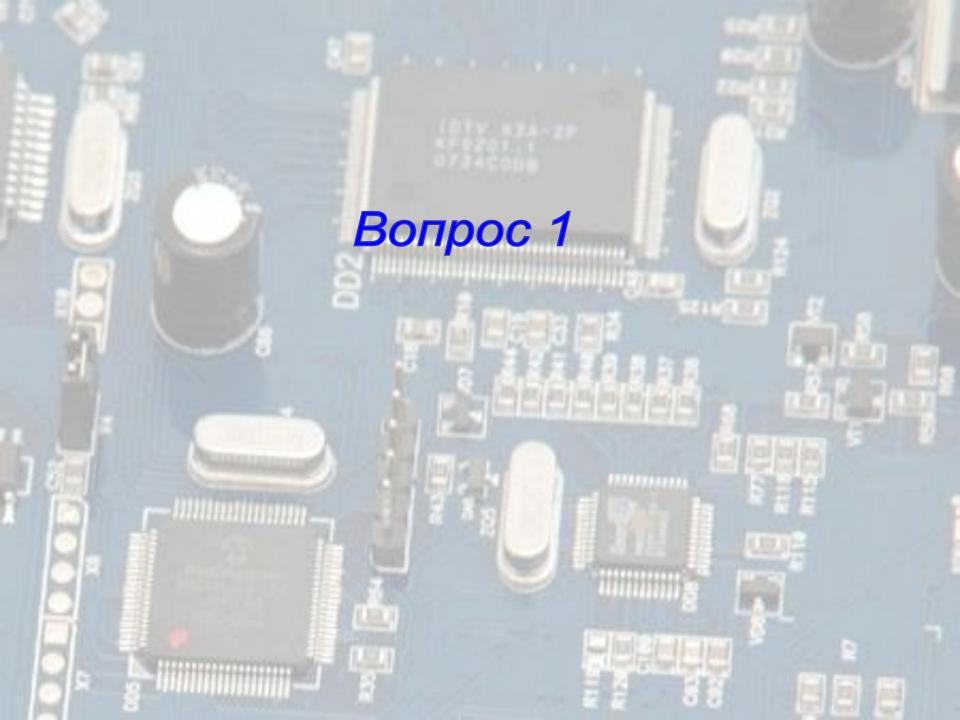
В 1865 году именно на этом месте было развернуто Тверское кавалерийское училище, готовившее офицеров, главным образом для частей армейской кавалерии, действовавших в составе в первую очередь Кавказской армии и в частности Тверского драгунского полка. Около трети выпускников учебных заведений, поступавших в то время в кавалерийские полки, получали военное образование именно в Твери. Кроме армейской кавалерии выпускники направлялись также в иррегулярные (конные и казачьи) полки, Отдельный корпус пограничной стражи, подпоручиками в пехоту и артиллерию.

После революции в здании училища и на его средства 9

февраля 1918 года открываются 1-е Тверские советские кавалерийские командные инструкторские курсы РККА, курсанты которых неоднократно принимали участие в самых ответственных сражением Грондоновой ройни В 1921 году Курсы

32 TATE PORDOC ALTER

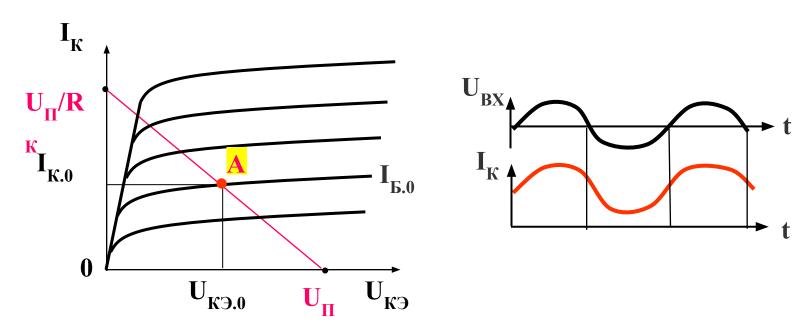

Схемотехника аналоговых электронных устройств

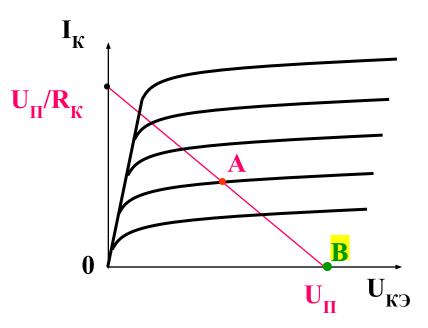

Автор: Хапёрский А.В.

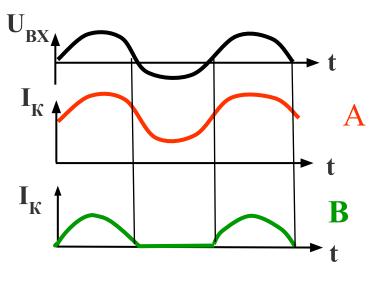
Количество просмотров: 35

1.ОСНОВЫ СХЕМОТЕХНИКИ АНАЛОГОВЫХ ЭЛЕКТРОННЫХ УСТРОЙСТВ

- 1.1. ОБЩИЕ СВЕДЕНИЯ ОБ АНАЛОГОВЫХ ЭЛЕКТРОННЫХ УСТРОЙСТВАХ
 - 1.1.1.Введение. Общие сведения об электронных усилителях
 - 1.1.2. Основные параметры и характеристики аналоговых электронных устройств
 - 1.1.3. Использование обратных связей в аналоговых электронных устройствах
- 1.2.КАСКАДЫ ПРЕДВАРИТЕЛЬНОГО УСИЛЕНИЯ ПЕРЕМЕННОГО ТОКА
 - 1. 2.1. Каскады предварительного усиления, включенные по схеме с общим эмиттером
 - 1.2. 2. Каскады предварительного усиления на полевых транзисторах
 - 1.2.3. Каскады предварительного усиления, включенные по схемам с общей базой
 - 1.2.4. Повторители напряжения
 - 1.2.5. Характеристики и параметры каскадов предварительного усиления в разных частотных областях
 - 1.2.6. Частотная коррекция усилителей
- 1.3. КАСКАДЫ УСИЛЕНИЯ ПОСТОЯННОГО ТОКА
 - 1.3.1. Каскады усиления постоянного тока на дискретных элементах
 - 1.3.2. Базовые схемные конфигурации аналоговых интегральных схем
- 1.4. ОКОНЕЧНЫЕ КАСКАДЫ
 - 1.4.1. Однотактные оконечные каскады
 - 1.4.2. Двухтактные оконечные каскады
- 2. АНАЛОГОВЫЕ ЭЛЕКТРОННЫЕ УСТРОЙСТВА НА ИНТЕГРАЛЬНЫХ СХЕМАХ
 - 2.1. МНОГОКАСКАДНЫЕ УСИЛИТЕЛИ
 - 2.1.1. Организация связи каскадов в многокаскадных усилителях
 - 2.1.2. Операционные усилители и их базовые схемные конфигурации
 - 2.1.3. Применение операционных усилителей в устройствах линейного и нелинейного функционального преобразования сигналов

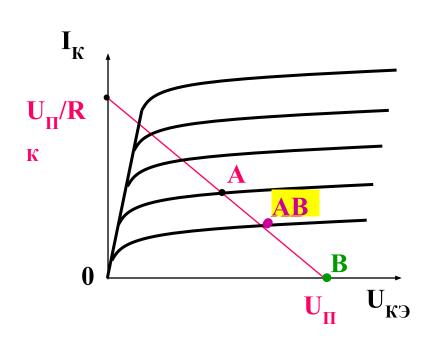


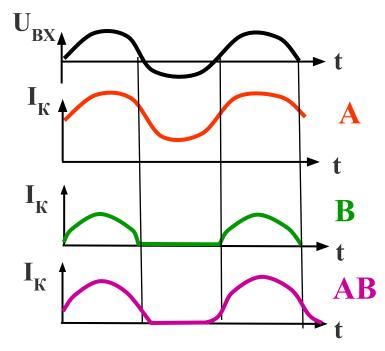

Оконечный каскад (OK) -это усилитель, который обеспечивает необходимую мощность выходного колебания на нагрузке усилителя.


Основными режимами работы оконечных каскадов являются режимы A, B и AB.

В режиме А исходное положение рабочей точки выбирают на середине рабочего участка линии нагрузки (точка A), Особенность режима: усилит. элемент не входит в режимы отсечки и ограничения.

В режиме $\bf B$ положение $\bf P.T.$ выбирают на границе режима отсечки (точка $\bf B$).




Особенность режима:

- •в положительных полупериодах $U_{\rm RX}$ усил.элемент не входит в режим ограничения и нелинейные искажения отсутствуют;
- в отрицательных полупериодах усил.элемент оказывается в режиме отсечки, что приводит к нелинейным искажениям.

Режим **AB** занимает промежуточное положение между режимами **A** и **B** (точка **AB**).

<u>Особенность режима:</u> меньшие нелинейными искажениями, чем режим **B**.

Режим D -ключевой режим, при котором на вход усилителя подаются импульсы полностью отпирающие или запирающие усилительный элемент.

Основными параметрам оконечных каскадов являются:

- □ коэффициент усиления мощности **К**_P;
- выходное сопротивление R_{вых};
- □ коэффициент полезного действия (КПД)

$$\eta = \frac{P_{\text{BЫX}}}{P_{\text{ПИТ}}} 100\%_{(2)}$$

где $P_{\text{вых}}$ - выходная мощность, отдаваемая в нагрузку; $P_{\text{пит-}}$ мощность потребляемая от источника питания.

□ коэффициент нелинейных искажений (гармоник)

$$k_{r} = \frac{\sqrt{U_{2}^{2} + U_{3}^{2} + ..(0)_{m}^{2}}}{U_{1}} 100\%$$

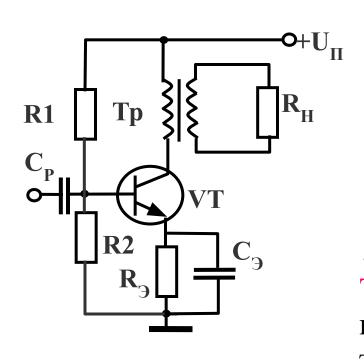
где U_1 -действующее значение напряжения основной частоты сигнала; $U_2, U_3, ..., U_m$ - действующие значения напряжений второй, третьей и m-ой гармоник

Основные требования к оконечным каскадам:

1) Обеспечение высокого КПД

Наименьшим значением **КП**Д характеризуется режим **A** ($\eta \le 50\%$), а наибольшим -режим **B** ($\eta \le 78,5\%$).

- 2) Получение максимальной мощности в нагрузке Условием получения максимальной мощности в нагрузке $\mathbf{R}_{\mathrm{Bbix,\,OK}} = \mathbf{R}_{\mathrm{H}}$.
- 3) Обеспечение минимальных нелинейных искажений Использование линейного участка линии нагрузки.


Выводы по первому вопросу:

1. В оконечных каскадах применяются режимы работы A, B или AB, отличающиеся исходным положением рабочей точки, значением КПД и уровнем нелинейных искажений.

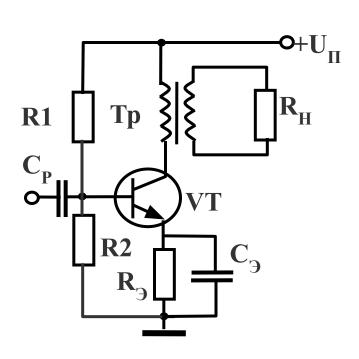
Однотактный каскад усиление - усилитель осуществляющий усиление одним усилительным прибором.

Трансформаторные оконечные каскады обычно используются при работе на низкоомную нагрузку, обеспечивая $R_{\rm BMX} = R_{\rm H}$.

Назначение элементов

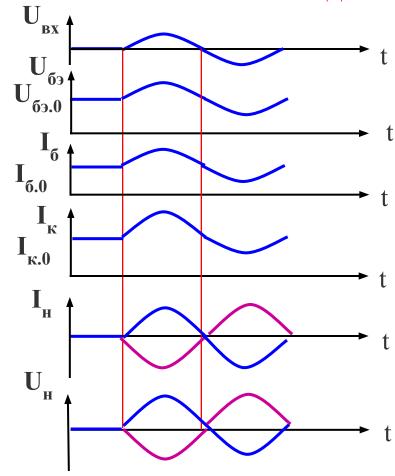
VT – усилительный элемент

 C_{p} — разделительный конденсатор, для развязки входа каскада по постоянному току


R1,Ř2 – резистивный делитель напряжения, для задания режима по постоянному току

Тр – трансформатор коллекторной нагрузки, для развязки выхода каскадов по постоянному току

 U_{Π} – источник питания

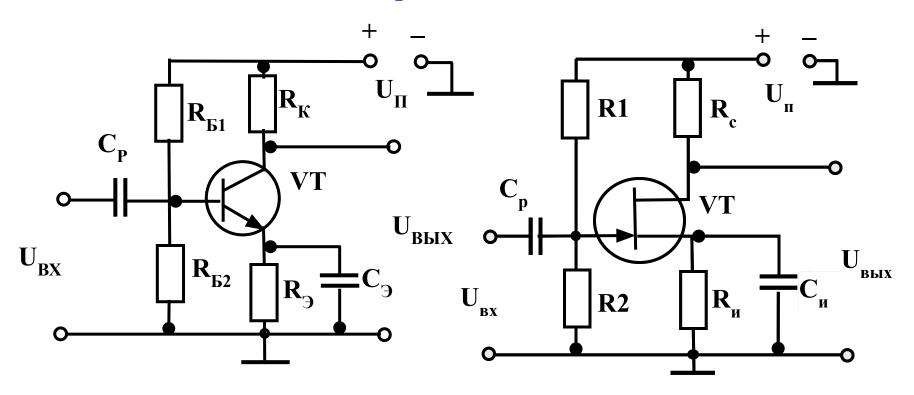

 $C_{\mathfrak{I}}$, $R_{\mathfrak{I}}$ — цепь эмитетрной стабилизации. $R_{\mathfrak{I}}$ создает в каскаде последовательную ООС по току. $C_{\mathfrak{I}}$ устраняет эту ООС на переменном токе блокируя $R_{\mathfrak{I}}$ на переменном токе

Принцип действия однотактного оконечного каскада

согласное включение обмоток

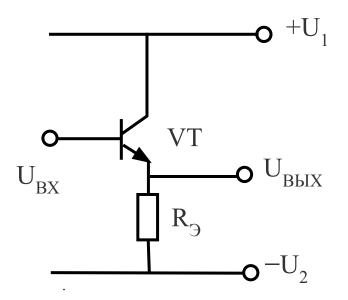
— встречное включение обмоток

При
$$U_{_{BX}}=0 \Rightarrow I_{_{K,0}}=\text{const} \Rightarrow \Phi=\text{const} \Rightarrow e_{_{B3}}=0 \Rightarrow I_{_{H}}=0 \Rightarrow U_{_{BMX}}=0$$
При $U_{_{BX}}\neq 0 \Rightarrow I_{_{K,0}}=\text{var} \Rightarrow \Phi=\text{var} \Rightarrow e_{_{B3}}\neq 0 \Rightarrow I_{_{H}}\neq 0 \Rightarrow U_{_{BMX}}\neq 0$

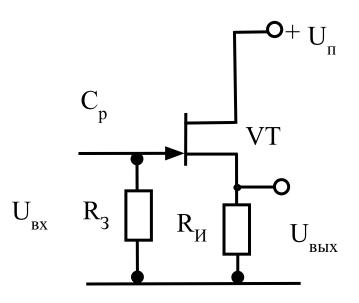

Недостатки однотактного трансформаторного каскада

- Низкий КПД.
- 2. Постоянное подмагничивания сердечника трансформатора током $\mathbf{I}_{\kappa,0}$ приводит к нелинейным искажениям сигнала

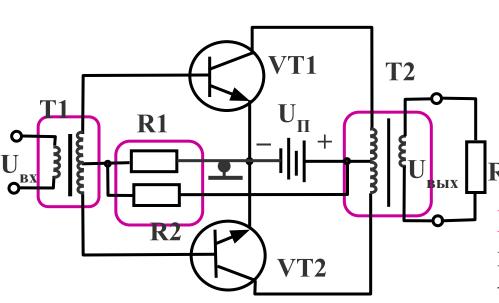
Оконечные каскада при работе на высокоомную нагрузку


Каскад с общим эмиттером

Каскад с общим истоком



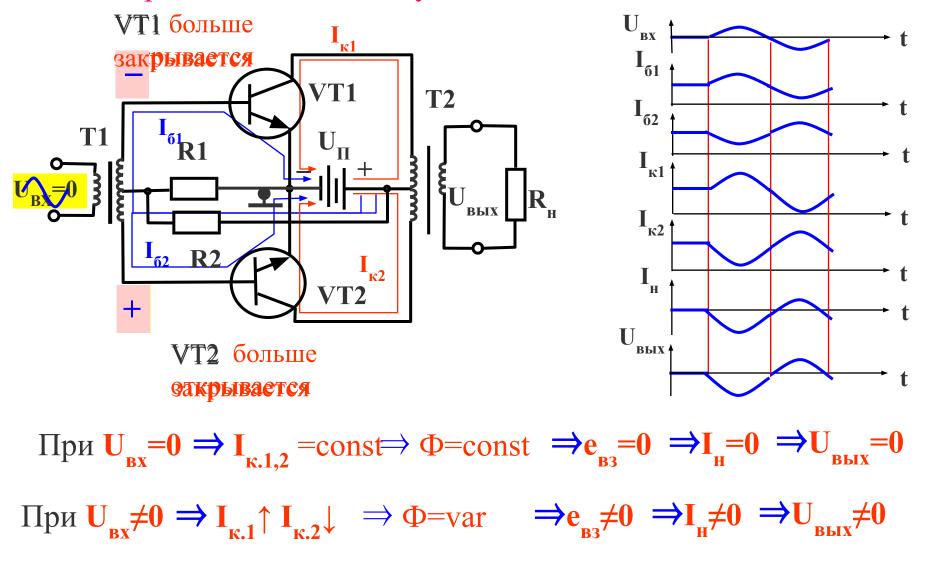
Бестрансформаторный однотактный ОК при работе на низкоомную или емкостную нагрузку


Эмиттерный повторитель

Истоковый повторитель

Двухтактный каскад - каскад из двух половин, называемых плечами и напряжение на нагрузке получают путем взаимного вычитания выходных колебаний плеч.

Двухтактный трансформаторный оконечный каскад

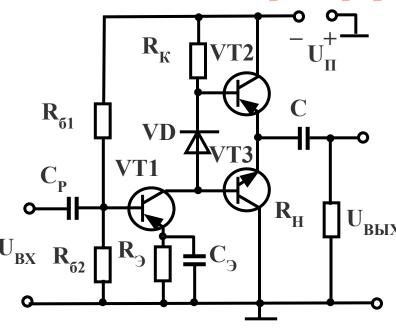

Назначение элементов

Т1 -входной трансформатор разделительная цепь, обеспечивающая противофазность напряжений $U_{\text{БЭ2}}$.

R1,R2 — резистивный делитель напряжения, для задания режима по постоянному току

T2 — выходной трансформатор, для развязки выхода каскадов по постоянному току

Принцип действия двухтактного оконечного каскада


Достоинствами двухтактного трансформаторного каскада:

- ◆являются высокий КПД;
- ◆отсутствие постоянного подмагничивания сердечника трансформатора Т2.

Недостатки двухтактных трансформаторных каскадов:

- ❖необходимость обеспечения симметрии его плеч;
- ❖большие габариты и масса.

Схема бестрансформаторного оконечного каскада

Назначение элементов

VT1 – усил. каскад ОЭ с фиксированным напряжением базы;

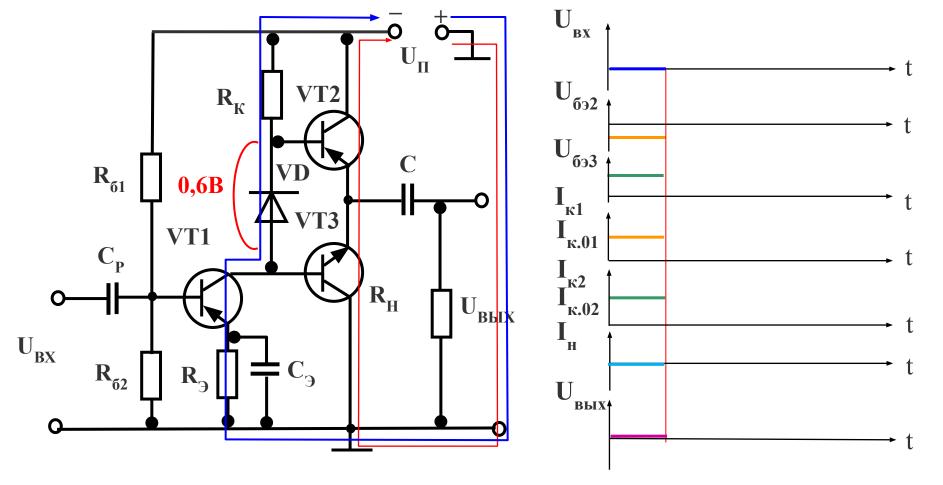
R₂ – резистор эмиттерной стабилизации, создающий ООС по постоянному току;

 $C_{\mathfrak{Z}}$ — конденсатор шунтирующий $R_{\mathfrak{Z}}$ по переменному току;

R_{Б1}, R_{Б2} – делитель задающий режим по постоянному току;

R_K-резистор коллекторной нагрузки каскала с ОЭ:

каскада с ОЭ; С_р – разделительный конденсатор для развязки оконечного каскада по постоянному току;

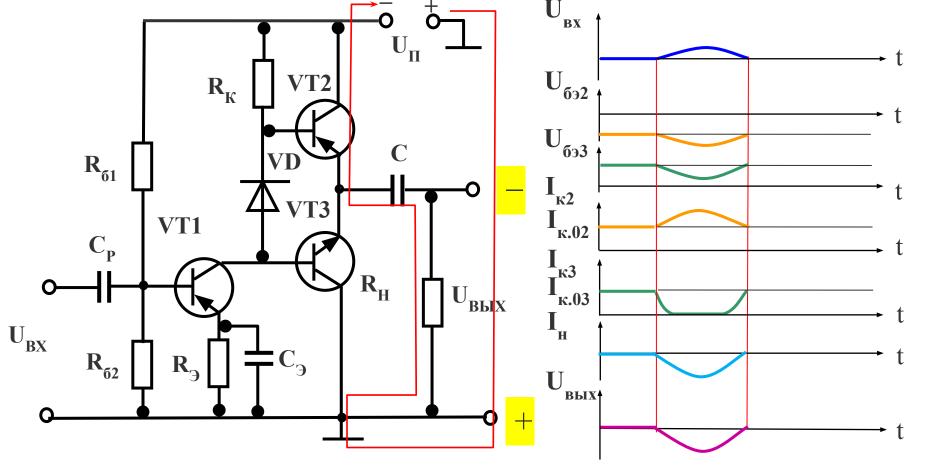

VD- диод создает смещение между базами VT2 и VT3 и обеспечивает температурную стабилизацию этих транзисторов.

VT2,VT3- комплементарная пара транзисторов по переменному току включены по схеме ОК, образуя двухтактный ЭП с сопротивлением $R_{\rm H}$.

С – конденсатор -источник питания VT3, для снижения частотных искажений на HЧ.

R_н – резистор нагрузки каскада.

Принцип действия бестрансформаторного ОК

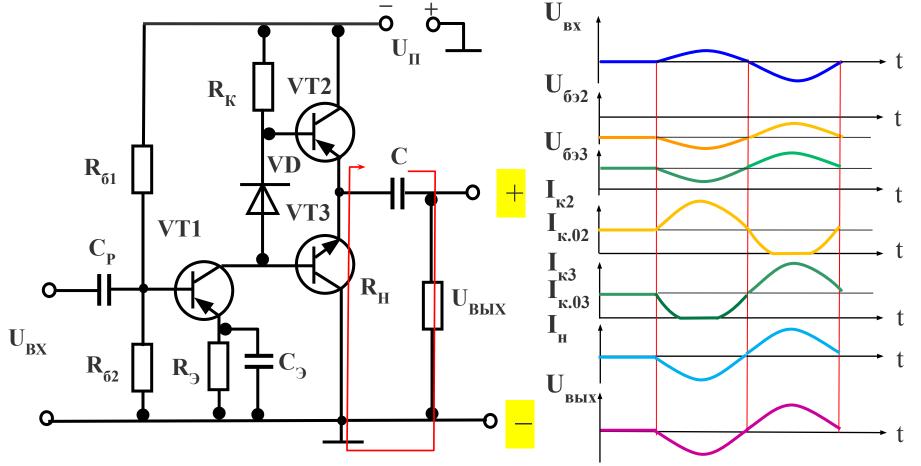


В исходном состоянии VT1 и через него протекает ток коллектора. За счет падения напряжения на открытом диоде

VT2 и VT3 на грани отсечки (режим В).

Токи $I_{K1} = I_{K2}$, но за счет конденсатора C ток $I_{H} = 0$ и $U_{BbIX.0} = 0$.

Принцип действия бестрансформаторного ОК

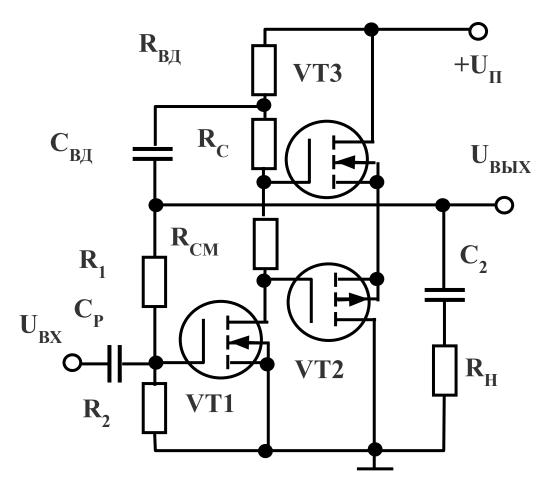

В положительном полупериоде U_{RX} VT1 закрывается $(V_{K1}\downarrow)$,

VT2- открывается и входит в активный режим VT3- закрывается.

С заряжается по цепи $+U_{\Pi} \rightarrow \bot \rightarrow R_{H} \rightarrow C \rightarrow VT2 \rightarrow -U_{\Pi}$

Ток заряда протекает через $R_{\rm H}$ снизу вверх.

Принцип действия бестрансформаторного ОК



В отрицательном полупериоде U_{BX} VT1 открывается ($V_{K1}\uparrow$), VT3- активный режим VT2 -закрывается.

С становится источником U_{Π} для VT3и разряжается по цепи $+C \rightarrow R_{H} \rightarrow \bot \rightarrow VT3 \rightarrow -C$

Ток заряда протекает через $R_{_{\rm H}}$ сверх вниз.

Схема бестрансформаторного ОК на МДП-транзисторах

Достоинствами бестрансформаторных ОК являются:

- ✓ меньшие габариты и масса;
- ✓ широкая полоса пропускания, меньшие частотные искажения;
- ✓ малое выходное сопротивление.

Вывод по второму вопросу:

В современной РЭА предпочтение отдается бестрансформаторным двухтактным каскадам, которые при тех же положительных качествах, что и трансформаторные двухтактные каскады, характеризуются меньшими габаритами, массой и более широкой полосой пропускания.

Задание на самостоятельную работу:

Отработать лекцию, используя л1/о с.138-151, л.1/д с.262-275, 297-299, Эл.2/о м.4.1., Эл.2/о м.4.2.. Подготовиться к практическому занятию №9 «Анализ и расчет оконечных каскадов».

Ответить на контрольные вопросы:

Контрольные вопросы:

- 1. Дайте определение режима А работы оконечного каскада?
- 2. Чем режим В оконечного каскада отличается от режима А?
- 3. Перечислите основные параметры оконечного каскада?
- 5. В чем достоинстов однотактноготрансформаторного оконечного каскада?
- 6. Какие устройства могут использоваться в качестве оконечного каскада при работе на высокоомную или емкостную нагрузку?