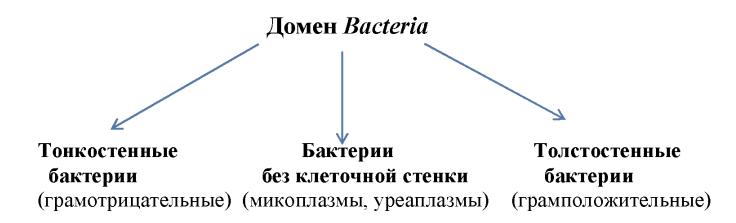


Тема 1.2.1. Основы морфологии и методы изучения микроорганизмов.


План занятия

- 1.Понятие о микроорганизмах. Бактерии: виды, строение бактериальной клетки.
- **2.Микроскопические методы изучения морфологии бактерий**: виды микроскопов, методы окраски. Дифференциация бактерий по морфологическим и тинкториальным (окрашивания) свойствам.
- 3. Приготовление препаратов из разного нативного материала и культуры микроорганизмов, окраска простым и сложными методами, микроскопия в иммерсии, описание препарата. Правила техники безопасности при проведении микроскопических исследований.

Морфология бактерий

- Подавляющее большинство бактерий (за исключением актиномицетов и нитчатых цианобактерий) одноклеточны и размножаются поперечным делением.
- Бактерии имеют разнообразную форму и размеры. В природе наиболее широко распространены тонкостенные грамположительные бактерии.
- Размеры бактерий варьируют в широких пределах.
- 1. Очень мелкие до 0,1 мкм (микоплазмы, хламидии).
- 2. Мелкие до 1,5 мкм (бруцеллы, стрептококки).
- 3. Средние до 3,0 мкм (пастереллы, сальмонеллы).
- 4. Крупные до 10,0 мкм (бациллы, клостридии).

Строение бактериал принценти

Структурные компоненты бактериальной клетки делятся на обязательные (жизненно необходимые) и необязательные.

Строение бактериальной

клетки

Обязательные структурные компоненты:

- (клеточная стенка);
- цитоплазматическая мембрана;
- цитоплазма;
- рибосомы;
- нуклеоид (ДНК).

Необязательные структурные компоненты:

- капсула;
- включения;
- жгутики;
- пили;
- плазмиды;
- споры.

Морфология бактерий, имеющих клеточную стенку

ТОНКОСТЕННЫЕ, ГРАМОТРИЦАТЕЛЬНЫ БАКТЕРИИ	Е ГРАМПОЛОЖИ	ТОЛСТОСТЕННЫЕ, ГРАМПОЛОЖИТЕЛЬНЫЕ БАКТЕРИИ	
Менингококки	Пневмококки	* *	
Гонококки	• Стрептококки	******	
Вейлонеллы •	• 🖁 Стафилококки	-178	
Палочки 🥏 .	_ 👟 Палочки	\- /	
Вибрионы 🥕	Бациллы*	T 7 7	
Кампилобактерии. Хеликобактерии	Клостридии*	* •	
Спириллы	Коринебактерин		
Спирохеты	Микобактерии		
Риккетсии	 Бифидобактерии 	~	
Хламидии • • •	• Актиномицеты	~54	

По внешнему виду среди бактерий различают **шарообразные формы** (кокки), извитые формы и палочки.

КОККИ
Монококки
Диплококки
Стрептококки
Тетракокки
Стафилококки
Сарцины

Бактерии Бациллы Клостридии

Вибрионы Спириллы Спирохеты

Кокки

- -**Монококки** представляют собой одиночно расположенные шаровидные (кокковидные) бактерии,
- -диплококки соединенные вместе 2 бактерии, --
- -СТРЕПТОКОККИ цепочка шаровидных бактерий,
- -Тетракокки 4 соединенные вместе шаровидные бактерии,
- -**стафилококки** шаровидные бактерии, соединенные в виде грозди винограда,

-сарц	И1Н Щонкожжкиу ложе	н ооо тюко	
	2. Диплококки	8	
	3. Стрептококки	8000	
	4. Тетракокки	88	***
	5. Стафилококки	888 888	
	6. Сарцины		

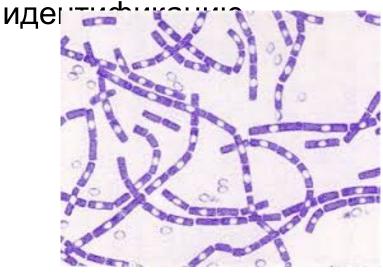
Палочки

Палочковидные формы представлены бактериями, не образующими спор; а также спорообразующими бациллами – аэробными бактериями, образующими споры, диаметр которых равен толщине бактерии; и клостридиями – анаэробными бактериями, образующими споры, диаметр которых больше толщины бактерий.

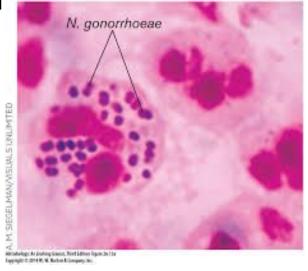
1. Бактерии	/	0
2. Бациллы		
3. Клостридии		1

Извитые формы

Извитые формы представлены **ВИБРИОНАМИ** – изогнутыми бактериями; **СПИРИЛЛАМИ** – спиралевидными бактериями; **СПИРОХЕТАМИ** – бактериями, изогнутыми и закрученными в виде локона.


1. Вибрионы	~	
2. Спириллы		
3. Спирохеты	{' {}} {}	Par

Патогенные для человека **спирохеты** представлены 3 родами: *Treponema, Borrelia, Leptospira*. Трепонемы имеют вид тонких нитей, штопорообразно закрученных, количество завитков 8-12 (например, *Treponema pallidum* – возбудитель сифилиса). Боррелии имеют по 3-8 крупных завитков (например, возбудители болезни Лайма – *Borrelia burgdorferi* и возвратного тифа – *B.recurrentis*). Лептоспиры образуют 15-30 мелких завитков, завитки неглубокие и частые, концы лептоспир изогнуты наподобие крючков с утолщениями на концах в виде букв S или C (*Leptospira interrogans* - возбудитель лептоспироза).


Форма микроорганизмов не является основным признаком, т.к. среди бактерий, имеющих одни и те же морфологические свойства, встречаются различные патогенные и сапрофитные виды, относящиеся к разным семействам и родам.

Однако у некоторых бактерий имеются морфологические

особенности, позволяющие провести

Bacillus anthracis (бацилла сибирской язвы) –клетки с прямыми

Neisseria gonorrhoeae (гонококк) – незавершённый фагоцитоз, диплококки

Строение бактериаль

КЛЕТКИ. КС Функции клеточной стенки:

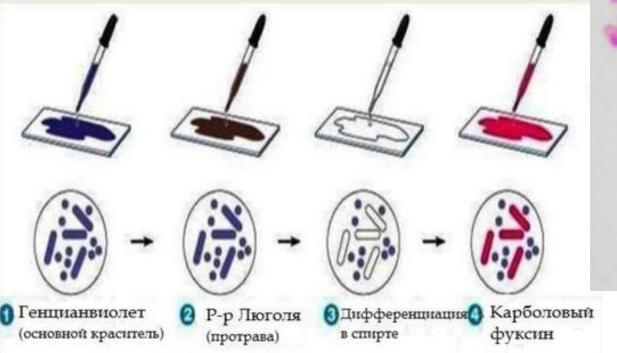
- 1. Является осмотическим барьером;
- 2. Определяет форму бактериальной клетки;
- 3. Защищает клетку от воздействий окружающей среды;
- 4. Несет разнообразные рецепторы, способствующие прикреплению бактериофагов, антител, а также различных химических соединений;
- 5. Через клеточную стенку в клетку поступают питательные вещества и выделяются продукты обмена;

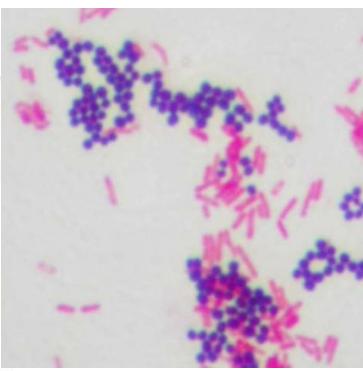
Строение клеточной стенки бактерии.

У бактерий имеется 2 типа строения клеточной стенки. В обоих случаях ее основу составляет пептидогликан

(M) Грамположительные пептидогликан клеточная мембрана мембранный белок липотейхоевая кислота порин Грамотрицательные липопротеин полисахарид фосфолипиды внешняя мембрана пептидогликан -клеточная мембрана

Строение клеточной стенки бакт

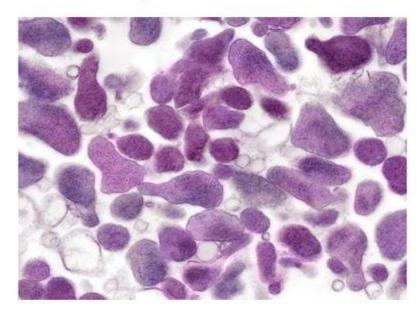




У Гр+ бактерий муреин составляет до 90 % массы клеточной стенки и образует многослойный (до 20-30 слоев) каркас. Такие бактерии при окраске по методу Грама прочно удерживают комплекс генцианвиолет в комплексе с йодом, (сине-фиолетовый цвет) и называются грамполо-жительными Гр+. У Гр- бактерий поверх слоев муреина располагается слой липополисахаридов. Эти бактерии при окраске по методу Грама не способны прочно удерживать комплекс генцианового фиолетового и йода и, соответственно, обесцвечиваются спиртом, прокрашиваясь дополнительным красителем - фуксином в розовокрасный цвет. Они называются грамотрицательными Гр-

Схема окрашивания по Граму

- **()**
- 1. Кристалвиолет (генцианвиолет) 2-3 мин.
- 2. Раствор Люголя (раствор I2 в KI) на 1 мин.
- 3. 95% этиловый спирт несколько раз до тех пор, пока не перестанут отходить фиолетовые струйки красителя.
- 4. Вода
- 5. **Фуксина Циля** 1-2 мин

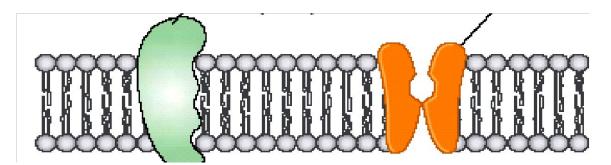

Бактерии без клеточной стенки

Микоплазмы

- Мелкие неподвижные гр- бактерии
- Полиморфные, чаще сферические, иногда нитевидные
- Могут проходить через бактериальные


фильтры

- Не имеют КС
- Инфицируют
 дыхательные пути и
 мочеполовую систему



Строение цитоплазматической мембраны

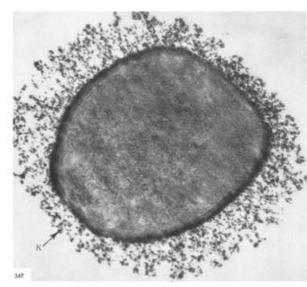
К клеточной стенке бактерий примыкает **цитоплазматическая мембрана**, строение которой аналогично мембранам эукариотов (состоит из **двойного слоя липидов**, главным образом фосфолипидов, со встроенными поверхностными и интегральными

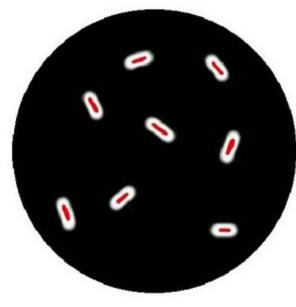
- <u>1 молекулы липидов:</u>
- а гидрофильная "голова":
- б гидрофобный "хвост";
- 2 молекулы белков:
- в интегральная
- г периферическая
- ∂ поверхностная

Строение цитоплазматической мембраны Функции ЦПМ

Цитоплазматическая мембрана (ЦПМ) обеспечивает:

- 1. Избирательную проницаемость и транспорт веществ в клетку;
- 2. Транспорт электронов и (синтез АТФ);
- 3. Выделение гидролитических экзоферментов;
- 4. Биосинтез различных полимеров.
- ЦПМ отделяет цитоплазму от клеточной стенки, служит осмотическим барьером клетки, регулирует транспорт веществ. Нередко она образует впячивания мезосомы.
- С ЦПМ и её производными связан также биосинтез клеточной стенки и спорообразование. К ней прикреплены жгутики, геномная (хромосомная) ДНК.
- В цитоплазме локализованы рибосомы и бактериальный нуклеоид, в ней также могут находиться включения и плазмиды (внехромосомная ДНК).

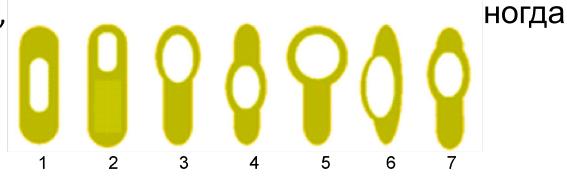




Строение бактериальной клетки.

Капсула

- Капсула слизистая структура толщиной более 0,2 мкм;
- Состав: полисахариды и полипептиды (мономеры Dглутаминовой кислоты).
- Капсула гидрофильна, препятствует фагоцитозу бактерий.
- Функции капсулы: защитные, адгезивные, патогенные и антигенные.
- Выявление: негативное контрастирование по Бурри-Гинсу;



Строение бактериальной клетки. Спора

Споры бактерий представляют собой форму существования бактериальных клеток в состоянии анабиоза и образуются при неблагоприятных условиях внешней среды.

Споры располагаются внутри бактериальной клетки

терминально, латерально.

Расположение спор:

1, 4 – центральное; 2, 3, 5 – терминальное; 6 – латеральное;

7 – субтерминальное

Строение бактериальной клетки. Спора

В процессе спорообразования бактериальная клетка почти полностью теряет воду, сморщивается, клеточная стенка уплотняется. Появляется новое вещество - дипиколинат кальция, которое образует комплексы с биополимерами клетки, устойчивые к действию температуры и ультрафиолетовых лучей. Бактерии в споровой форме

Споры образуют только Гр+

Спорообразование у бактерий

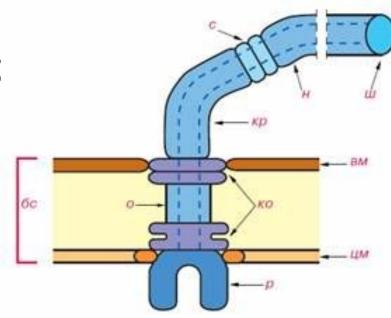
- Споры бактерий переносят нагревание до +140С и охлаждение до -273С. Они выдерживают высушивание, не погибают при кипячении, замораживании. Споры легко разносятся ветром и т.д. Их много в воздухе и почве.
- В почве споры растений могут сохранятся 20-30 и более лет. При наступлении благоприятных условий спора прорастает и становится жизнедеятельной бактерией.

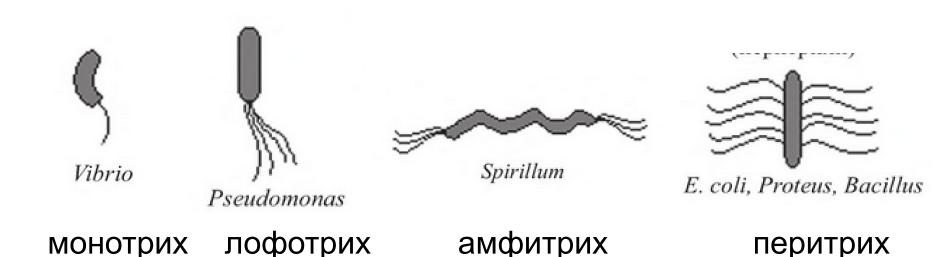
Строение бактериальной клетки. Жгутики

Жгутики Основная функция жгутиков - движение.

Характеристика жгутиков:

- •органоиды движения (скользящее, плавающее) бактерий;
- •белковая природа (сократительный белок **флагеллин** похож на миозин);
- •тонкие, длинные;
- •состоят из спирально закрученной нити, крюка и базального тельца (базальной структуры).

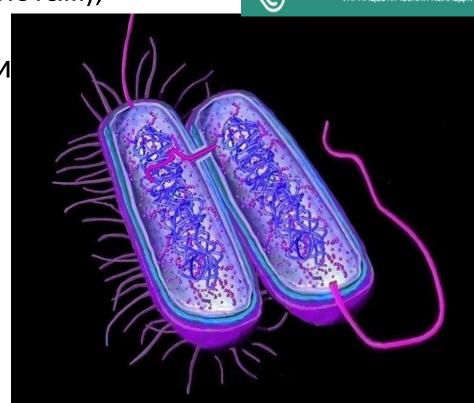



Рис. 1. Схема строения бактериального жгутика: бс – базальная структура, вм – внешняя мембрана, цм – цитоплазматическая мембрана, р – ротор, о – ось, ко – кольца жгутикового мотора, кр – крюк, с – цилиндрики-соединители, н – нить жгутика, ш – шапочка

Строение бактериальной клетки. Жгутики

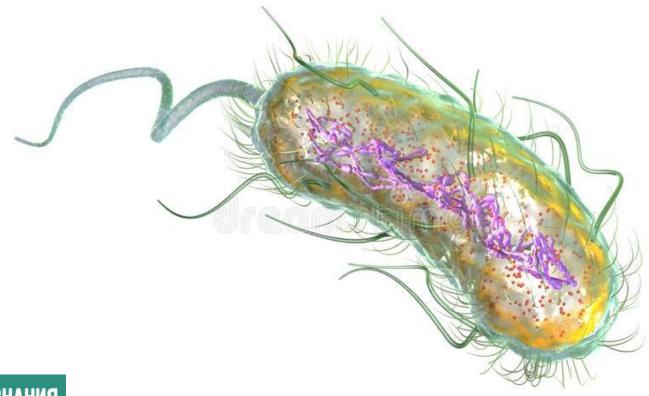
В зависимости от количества и расположения жгутиков бактерии подразделяются на 4 группы:

- 1. Монотрихи имеют только один жгутик (род Vibrio),
- 2. Лофотрихи пучок жгутиков на одном полюсе клетки (род *Pseudomonas*)
- 3. Амфитрихи жгутики (один или пучок) расположены на обоих полюсах клетки (род *Spirillum*),
- 4. Перитрихи жгутики расположены по всей поверхности клетки (род *Escherichia, Salmonella*).

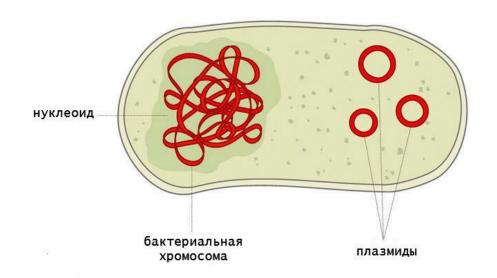

Строение бактериальной клетки. Пили

На поверхности ряда бактерий существуют белковые образования – **пили** (ворсинки ,фимбрии, микроворсинки).

Функции пилей:


- слипание бактерий между собой;
- прикрепление бактерий к поверхностям;
- адгезия (прилипание к эукариотам);
- транспорт метаболитов;
- половые пили для конъюгаци

Строение бактериальной клетки. Генетический материал.


 НУКЛЕОИД - одна замкнутая кольцевидная хромосома, содержащая до 4000 отдельных генов, необходимых для поддержания жизнедеятельности и размножения бактерий, бактериальная клетка гаплоидна.

Строение бактериальной клетки. Генетический материал.

- Плазмиды образованы молекулами ДНК.
- Регуляторные плазмиды участвуют в компенсировании тех или иных дефектов метаболизма бактериальной клетки.
- Кодирующие плазмиды привносят в бактериальную клетку новую генетическую информацию, кодирующую новые, необычные свойства (например, устойчивость к антибиотикам)

Строение бактериальной клетки. Генетический материал.

Плазмиды

- *F-плазмиды* контролируют *синтез F-пилей,* способствующих передаче генетического материала от бактерий-доноров (F+) к бактериям-реципиентам (F–) в процессе конъюгации
- *R-плазмиды* (от англ. *resistance*, устойчивость) кодируют устойчивость к лекарственным препаратам.
- Плазмиды патогенности контролируют вирулентные свойства бактерий и токсинообразование (плазмиды включают tox+-гены).
- Плазмиды бактериоциногении кодируют синтез бактериоцинов белковых продуктов, вызывающих гибель бактерий того же или близких видов. Плазмиды могут кодировать устойчивость к антибиотикам.

изучения морфологии бактерий.

Микроскопия:

- (просвечивающая, фазовоконтрастная, темнопольная)
- -электронная

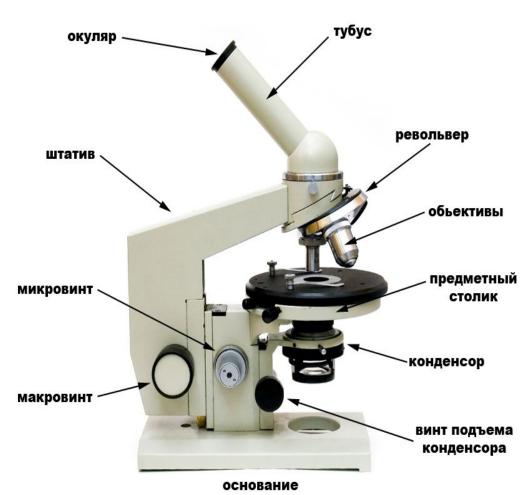
- световая

-пюминеспентная

Микроскопические метод изучения морфологии

микроскопический бактерий.

исследования


- это изучение под микроскопом окрашенных препаратов из исследуемого материала:

Достоинства:

- -быстрый;
- -ранний.

Недостатки:

-неточный (ориентировочный)

minimpoononin ioomio morogoi

изучения морфологии

С ветово О ЖКОТКА О МИЛИЗ частей:

механической

предназначена для устойчивости прибора, удобства пользования:

- подставка (ножка)
- тубусодержатель
- тубус
- револьвер
- предметный столик
- макровинт
- микровинт

оптической

предназначена для освещения и увеличения объектов:

Осветительный аппарат

находится под предметным столиком

- зеркало плосковогнутое (при искусственном освещении используется вогнутая сторона зеркала)
- диафрагма (регулирует объем светового пучка)
- конденсор (в фокусе конденсора собираются параллельные лучи света)

<u>Для увеличения:</u>

- объективы:

малый x8 большой x40 иммерсионный x90

- окуляры:

x7, x10, x15 pa3


Микроскопические метод мазучения морфологии

бактерий. Общее увеличение микроскопа равно

Общее увеличение микроскопа равно произведению увеличения объектива на увеличение окуляра (например, 10х40=400).

Разрешающая способность микроскопа – это размер наименьшего объекта, который можно увидеть в данный микроскоп.

Для **световых микроскопов** разрешающая способность – 0,2 мкм, для электронного - в 100-1000 раз выше.

Системы микроскопии

сухая

- -между объектом и объективом находится воздух;
- используется для изучения крупных биологических объектов (ботанических, гистологических);
- максимальное увеличение объекти-

ва ×40

Иммер

фронтальная

линза объектива

иммерсионная

- между объектом и объективом - жидкость (масло, вода);
- используется для изучения микроорганизмов;
- увеличение объектива ×90

Сухая

НОВЫЕ ЗНАНИЯ ФАРМАЦЕВИИЧЕСКИЙ КОЛЛЕДЖ

Микроскопические методы изучения морфологии бактерий

Преимущества иммерсионной системы

- Большее увеличение (увеличивает в 90 раз вместо 40 в сухой системе микроскопии)
- 2. Лучшая освещенность за счет создания однородной среды для прохождения лучей света с помощью иммерсионного масла

Микроскопические методы изучения морфологии бактерий

Правила работы с микроскопом при использовании иммерсионной системы:

- 1. Настроить освещение микроскопа, используя вогнутое зеркало и объектив.
- 2. На приготовленный и окрашенный мазок на предметном стекле нанести каплю иммерсионного масла и поместить его на предметный столик, укрепив зажимами.
- 3. Повернуть револьвер до отметки иммерсионного объектива 90 х.
- 4. Осторожно погрузить объектив в каплю масла под углом бокового зрения.
- 5. Установить ориентировочный фокус при помощи макровинта.
- 6. Провести окончательную фокусировку препарата микровинтом, вращая его в пределах только одного оборота. Нельзя допускать соприкосновения объектива с препаратом, так как это может повлечь поломку покровного стекла или фронтальной линзы (свободное расстояние иммерсионного объектива 0,1-1мм).
- 7. По окончании работы микроскопа необходимо вытереть масло с иммерсионного объектива и перевести револьвер на малый объектив 8х.

Препараты для микроскопии

Препараты бывают двух типов:

- 1. Нативные (живые, препараты живых клеток). Долго не хранятся, основное назначение определение подвижности клеток.
- 2. Фиксированные окрашенные.

Хранятся долго, безопасны в использовании, на них видны морфологические особенности клеток.

Приготовление препарато Окрашенные препараты. Методы окраски.

Методы

простые

(ориентировочные)

1) окрашивают одним красителем анилинового ряда - основным или кислым: - кислый фуксин

- -эозин
- метиленовый синий
- генциановый фиолетовый
- 2) используются для изучения морфологии микроорганизмов

сложные

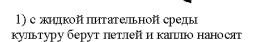
(дифференцирующие)

1) используют несколько красителей (основная и вспомогательные краски, обесцвечи-

вающие жидкости (этанол)

- метод Грама
- окраска по Нейссеру
- Гинса-Бурри (выявление капсул)
- Циля-Нильсена (выявление

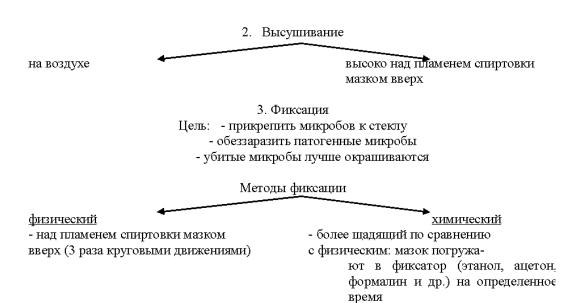
спор)


2) используются для определения не только морфологии, но и химического состава и структуры микробных клеток

В микробиологии чаще всего используют основные красители (основной фуксин, метиленовая синь)

Техника приготовления фиксированных окрашенных

Техника пригод развиденных препаратов


1. Приготовление мазка

непосредственно на стекло (без воды)

2) с плотной питательной среды на предметное стекло наносят небольшую каплю воды, в которой эмульгируют исследуемый материал и распределяют по площади около 2 см².

№ препарата пишут на лицевой стороне, а с обратной стороны местонахождения мазка обводят восковым карандашом.

4. Окраска

Методы

сложные

Дифференциация бактерий по морфологическим и тинкториальным свойствам

Тинкториальные свойства- свойства микроорганизмов, характеризующие их способность вступать в реакцию с красителями и окрашиваться определённым образом. После изучения свойств бактерий сопоставляют полученные данные с признаками бактерий, имеющимися в классификационных схемах или определителях м/о (Берджи), и проводят их родовую/видовую идентификацию.