Моделирование источников техногенных опасностей

Моделирование источников техногенных опасностей

При прогнозировании обстановки в чрезвычайных ситуациях техногенного характера, принимают следующие допущения:

- рассматривают негативные события (источники чрезвычайных ситуаций), наносящие наибольший ущерб;
- масса (объем) выброса (сброса) вещества или энергии при техногенной аварии принимаются максимально возможными в данных условиях;
- метеоусловия устойчивость атмосферы, скорость и направления ветра, температура воздуха, влажность и тому подобное принимаются наиболее благоприятными (в частности, скорость ветра 1 м/с, температура 20 °C) для распространения пыле-паро-газового облака (радиоактивного, токсического, взрывоопасного);

 распределение населения в домах, на улице, в транспорте, на производстве принимается соответствующим среднестатистическому, с равномерной плотностью населения (персонала) в пределах населенного пункта (объекта экономики) • 26.12.2012. Взрыв газа произошел в тюменской новостройке во время установки натяжных потолков. Два человека погибли, один получил тяжелые травмы и доставлен в ожоговое отделение Тюменской областной клинической больницы № 1. В результате обрушились межэтажные конструкции во втором подъезде между седьмым и восьмым этажами.

• 20.06.2014. В Тюмени по улице Черепанова произошел взрыв бытового газа в двухэтажном доме. Разрушены семь квартир. ЧП зафиксировано 20 июня в 18:20 местного времени. На месте происшествия работали 10 единиц спецтехники и сорок человек личного состава.

3 ноября 2014 г. около 22 часов в главном корпусе Тобольского филиала ОАО "СГ-транс". Здание предназначено для проведения испытаний железнодорожных цистерн. Взрыв произошел в результате нарушения правил производства работ на взрывоопасных объектах. Взорвалась газовоздушная смесь. Два слесаря предприятия 48 и 28 лет погибли на месте, еще четверо сотрудников госпитализированы в областную больницу №3 Тобольска с травмами различной степени тяжести.

• Февраль, 2016 г. взрыв на территории строительной площадки в заречном микрорайоне Тюмени. Причина-короткое замыкание в проводке склада строительной компании. В результате этого взорвался кислородный баллон, находившийся на складе, и распространилось пламя. В тушении огня приняли участие 40 пожарных. При этом было использовано 14 единиц специальной техники МЧС. Огонь удалось потушить достаточно быстро. Соседним зданиям ущерб не нанесен.

- 08.2017 г. Взрыв цеха Тобольского филиала по транспорту газа компании «СГ-Транс» -5 пострадавших, цех разрушен. В Тобольске произошел взрыв железнодорожной цистерны, которая находилась в специализированном здании. От взрывной волны постройка полностью разрушилась.
- ремонтировали железнодорожную цистерну. Взорвалась паровоздушная смесь сжиженного газа без последующего горения. Сотрудники МЧС по прибытию охлаждали цистерны, находившихся в цехе, затем эвакуировали их.

Тема 1. Прогнозирование последствий аварий, связанных со взрывами

Поражающие факторы взрывов. Взрыв конденсированных взрывчатых веществ.

При взрывах конденсированных взрывчатых веществ (ВВ) возникают два основных поражающих фактора: воздушная ударная волна и разлет осколков.

Воздушная ударная волна характеризуется тремя параметрами:

- избыточным давлением на фронте ударной волны, ΔP_{ϕ} , кПа;
- длительностью фазы сжатия, τ_+ , c;
- импульсом фазы сжатия, I_+ , кПа*с;

Основным поражающим параметром является избыточное давление на фронте ударной волны.

Разлет осколков характеризуется следующими параметрами:

- масса осколка, m_{oc} , кг;
- скорость разлета осколка, V_{oc} , м/с.

Установлено, что избыточное давление на фронте воздушной ударной волны является функцией приведенного радиуса зоны взрыва:

$$\overline{R} = R/\sqrt[3]{G_{\text{tht}}\phi}$$
,

где ф – коэффициент, учитывающий характер подступающей поверхности, который принимается равным: для металла – 1; бетона – 0,95; грунта – 0,6–0,8.

Для определения зависимости избыточного давления на фронте ударной волны ΔP_{ϕ} , кПа, от расстояния R, м, до эпицентра наземного взрыва конденсированного взрывчатого вещества в диапазоне $1 \le \overline{R} \le 100$ наиболее часто используют формулу М.А. Садовского:

$$\Delta P_{\phi} = \frac{95}{\overline{R}} + \frac{390}{\overline{R}^2} + \frac{1300}{\overline{R}^3}.$$
 (3.1)

Моделирование взрыва парогазовоздушного облака в неограниченном пространстве

Парогазовоздушное (ПГВ) облако образуется при авариях в системах переработки, транспортировке и хранения перегретых жидкостей и сжатых газов, а также при испарении разлившейся горючей жидкости (нефть, бензин и т. п.).

При аварии агрегата, содержащего горючие жидкости или газы, принимается, что все содержимое аппарата поступает в окружающее пространство и одновременно происходит утечка вещества из подводящего и отводящего трубопроводов в течение времени, необходимого для отключения трубопроводов

Масса газа m_{Γ} (кг), поступившего в окружающее пространство при аварии аппарата, равна

$$m_{\Gamma} = (V_{\rm a} + V_{\rm T}) \rho_{\Gamma},$$

где $V_a = 0.01 \cdot P_1 V_1$ — объем газа, прошедшего из аппарата, м³; P_1 — давление в аппарате, кПа; V_1 — объем аппарата, м³; $V_{\tau} = V_{\tau 1} = V_{\tau 2}$ — объем газа, вышедшего из трубопровода, м³; $V_{\tau 1} = Q_{\tau}$ — объем газа, вышедшего из трубопровода до его отключения, м³; Q — расход газа, определяемый в соответствии с технологическим регламентом в зависимости от давления в трубопроводе, его диаметра, температуры газа и т.п., м³/с; τ — время, определяемое по табл.

 $V_{\text{т2}} = 0.01\pi P_2 \sum_{i=1}^n r_i^2 L_i$ — объем газа, вышедшего из трубопровода после его отключения, м³; P_2 — максимальное давление в трубопроводе по технологическому регламенту, кПа; r_i — внутренний радиус i-го участка трубопровода, м; L_i — длина i-го участка трубопровода от аварийного аппарата до задвижек, м; n — число поврежденных участков трубопровода; $\rho_{\text{г}}$ — плотность паров газа, кг/м³.

При аварии аппарата с жидкостью часть жидкости может находиться в виде пара, вырывающегося при аварии в окружающее пространство, образуя первичное облако. Оставшаяся часть жидкости разливается либо внутри обваловки (поддона), либо на грунте с последующим испарением с зеркала разлива с образованием вторичного облака.

Масса пара в первичном облаке $m_{\pi,1}$ (кг) равна

$$m_{\rm n,1} = \alpha \frac{M (V_1 P_1 + V_{\rm T} P_2)}{R T_{\star \star}},$$

где α – объемная доля оборудования, заполненного газовой фазой; V_1 , P_1 , Π a, $V_{\rm T}$ и P_2 , Π a. – то же, что и в формуле — ; $T_{\rm ж}$ – температура жидкости в аппаратуре, K; M – молекулярная масса жидкости, кг/кмоль; R – универсальная газовая постоянная газа, равная 8310 Дж/(K·моль).

Если разлившаяся жидкость имеет температуру $T_{\rm ж}$ выше, чем температура кипения $T_{\rm кип}$ и температура окружающей среды $T_{\rm oc}$ ($T_{\rm ж} > T_{\rm кип} > T_{\rm oc}$), то она кипит за счет перегрева с образованием пара с массой $m_{\rm п, nep}$, кг

$$m_{\text{п.пер}} = \frac{C_p (T_{\text{ж}} + T_{\text{кип}})}{L_{\text{кип}}} m_{\text{ж}},$$

где $L_{\text{кип}}$ — удельная теплота кипения жидкости при температуре перегрева $T_{\text{ж}}$, Дж/кг; C_p — удельная теплоемкость жидкости при температуре перегрева $T_{\text{ж}}$, Дж/(кг·К); $m_{\text{ж}}$ — масса перегретой жидкости, кг.

Разлившаяся жидкость с температурой $T_{\rm ж} < T_{\rm кип}$ испаряется с образованием пара массой $m_{\rm п, исп}$, кг, во вторичном облаке.

$$m_{\text{п,исп}} = W F_{\text{исп}} \tau_{\text{исп}},$$

где W — интенсивность испарения жидкости, кг/(м²-с); $F_{\rm исп}$ — площадь испарения (разлива), м², равная площади обваловки (поддона) или площади поверхности, занимаемой разлившейся жидкостью исходя из расчета, что 1 л смесей и растворов, содержащих 70 % и менее (по массе) растворителей, разливается на $0.1 \, {\rm M}^2$, остальные жидкости на $0.15 \, {\rm M}^2$; $\tau_{\rm исп}$ — время испарения разлившейся жидкости, с, равное либо времени полного испарения [$\tau_{\rm исп} = m_{\rm ж}/(WF_{\rm исп})$], либо ограничиваемое временем $3600 \, {\rm c}$, в течение которых должны быть приняты меры по устранению аварии.

При этом радиус облака $R_{\text{нкпр}}$ (м) определяется по формулам: для горючих газов

$$R_{\text{hkmp}} = 14,5632 \left(\frac{m_{\text{r}}}{\rho_{\text{T}} \cdot C_{\text{hkmp}}} \right)^{1/3};$$

для паров нагретых ЛВЖ

$$R_{\rm hkmp} = 3{,}1501\sqrt{\frac{\tau_{\rm ucm}}{3600}} \left(\frac{P_{\rm hac}}{C_{\rm hkmp}}\right)^{0,813} \cdot \left(\frac{m_{\rm m}}{\rho_{\rm m}P_{\rm hac}}\right)^{1/3}.$$

$$G_{ ext{\tiny THT}} = rac{Q_{V_{ ext{\tiny BB}}}}{Q_{V_{ ext{\tiny THT}}}},$$

где $Q_{V_{\rm BB}}$ и $Q_{V_{\rm THT}}$ – энергии взрывов 1 кг рассматриваемого взрывчатого вещества и тротила, кДж/кг, приведенные в табл.

Энергии взрыва Q_{ν} (кДж/кг) конденсированных взрывчатых веществ

Взрывчатое вещество	Q_V	Взрывчатое вещество	
Индивидуальные:		Смеси:	
Тротил (ТНТ)	4520	Амматол 80/20 (80% нитрата аммония + 20% ТНТ)	
Гексоген	5360		
Октоген	5860	60%	
Нитроглицерин	6700	60% нитроглицериновый динамит	
Тетрил	4500	Торпекс (42% гексогена +40% ТНТ +18 Al)	
Громиная раука	1790	Пластическое ВВ (90% нитроглицерина +8%	
Гремучая ртуть	1/90	нитроцеллюлозы $+1\%$ щелочи $+0,2\%$ H_2O	

Опытным путем установлено, что облако ПГВ смеси, образующейся при разрушении оборудования, содержащего горючие вещества, имеют форму полусферы с объемом:

$$V=\frac{2}{3}\pi R_0^3,$$

где R_0 – радиус полусферы.

С другой стороны, масса горючего вещества m_{Γ} может образовать ПГВ смесь, занимающую при нормальных условиях объем:

$$V = \frac{m_{\scriptscriptstyle \Gamma} V_0 k}{M C_{\scriptscriptstyle \rm CTX}},$$

где k — коэффициент, зависящий от способа хранения горючего вещества (1 — для газа; 0,6 — для сжиженного газа под давлением; 0,1 — для сжиженного газа при пониженной температуре (изотермическое хранение); 0,06 — аварийный разлив ЛВЖ); $C_{\text{стх}}$ — стехиометрическая концентрация газа в смеси, объемный % (см. табл.).

Из условия равенства объема полусферы и образовавшейся ПГВ смеси получим:

$$R_0 = 10 \left(\frac{m_{\rm r} k}{MC_{\rm ctx}} \right)^{1/3}.$$

Взрыв в ограниченном пространстве

Избыточное давление взрыва ΔP_{ϕ} , кПа, для индивидуальных горючих веществ, состоящих из атомов углерода, водорода, кислорода, хлора, брома и фтора, определяется по формуле:

$$\Delta P_{\phi} = \frac{100(P_{\text{max}} - P_0)}{V_{\text{cB}} \rho_{\Gamma} C_{\text{cTX}} K_{\text{H}}},$$

где $P_{\rm max}$ — максимальное давление взрыва стехиометрической газо- или паровоздушной смеси в замкнутом объеме, определяемое по справочным данным (при отсутствии данных допускается принимать равным 900 кПа); P_0 — начальное давление, принимаемое равным 101,3 кПа; m — масса горючего газа или паров ЛВЖ в помещении, кг; Z — коэффициент участия горючего во взрыве, принимаемый равным

1 для водорода, 0.5 – для других горючих газов, 0.3 – для паров ЛВЖ и ГЖ; $V_{\rm cb}$ – свободный объем помещения ${\rm M}^3$ (можно принять равным 80 % помещения); ${\rm p_r}$ – плотность газа или пара при расчетной температуре, ${\rm Kr/M}^3$; $K_{\rm H}$ – коэффициент учитывающий негерметичность помещения и неадиабатности процессов горения, принимаемый равным 3; $C_{\rm crx}$ – стехиометрическая концентрация горючего, об. %, вычисляемая по формуле

$$C_{\text{crx}} = \frac{100}{1 + 4,84\beta},$$

где $\beta = n_c + 0.25 (n_H - n_x) - 0.5 n_0$ – стехиометрический коэффициент кислорода в реакции горения $(n_c, n_H, n_X, n_0$ – число атомов углерода, водорода, кислорода и галоидов в молекуле горючего).

Прогнозирование обстановки при взрывах

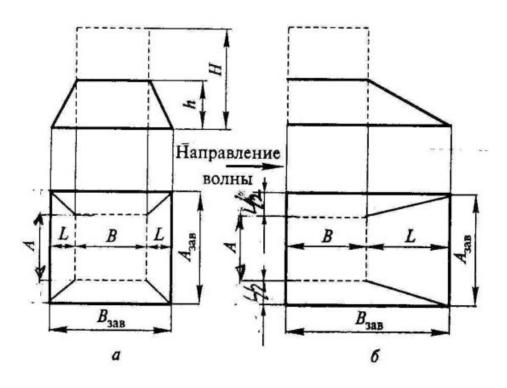
Прогнозирование обстановки при взрывах заключается в определении размеров зон возможных поражений, степени поражения людей и разрушения объектов. Для этого обычно используют один из двух методов прогнозирования последствий взрывов: детерминированный (упрощенный) и вероятностный.

При детерминированном способе прогнозирования поражающий эффект ударной волны определяется избыточным давлением во фронте ударной волны ΔP_{ϕ} , кПа, (табл. $\dot{}$).

тиолици э.э

Степень поражения людей в зависимости от величины избыточного давления

Избыточное давление, ∆Р _Ф , кПа	Менее 10	10–40	40–60	60–100	Более 100
Степень поражения людей	Безопасное избыточное давление	Легкая (ушибы, потеря слуха)	Средняя (кровотечения, вывихи, сотрясение мозга)	C. 120	Смертельное поражение


Избыточное давление во фронте ударной волны ΔP_{ϕ} (кПа), при котором происходит разрушение объектов

Объект	Разрушение			
Ооъект	Полное	Сильное	Среднее	Слабое
Жилые здания:				
Кирпичные многоэтажные	3040	2030	1020	810
Кирпичные малоэтажные	3545	2535	1525	815
Деревянные	2030	1220	812	68
Здания промышленные:			0	
С тяжелым металлическим или ж/б каркасом	60100	4060	2040	1020
С легким металлическим каркасом или бескаркасные	80120	5080	2050	1020
Промышленные объекты:				
ТЭС	2540	2025	15220	1015
Котельные	3545	2535	1525	1015

Трансформаторные подстанции	100	4060	2040	1020
ЛЭП	120200	80120	5070	2040
Водонапорные башни	70	6070	4060	2040
Станочное оборудование	80100	6080	4060	2545
Кузнечнопрессовое оборудование	200250	150200	100150	50100
Резервуара, трубопроводы:				
Стальные наземные	90	80	55	35
Газгольдеры и емкости ГСМ и химических	40	35	25	20
веществ	40	33	23	20
Частично заглубленные для нефтепродуктов	100	75	40	20
Подземные	200	150	75	40
Автозаправочные станции	<u>-</u> %	4060	3040	2030
Перекачивающие и компрессорные станции	4550	3545	2535	1525
Резервуарные парки (заполненные)	90100	7090	5080	2040
Транспорт:				\$
Металлические и ж/б мосты	250300	200250	150200	150

Примечание. *Слабые разрушения* – повреждение или разрушение крыш, оконных и дверных проемов. Ущерб – 10–15% от стоимости здания; *средние разрушения* – разрушение крыш, окон, перегородок, чердачных перекрытий, верхних этажей. Ущерб – 30–40%; *сильные разрушения* – разрушение несущих конструкций и

Расчетные схемы завалов

внутри здания (a); вне здания (b); - - - - контуры здания до разрушения; контуры здания до разрушения; ___ - контуры завала

При приближенных оценках размеры завалов, образующихся при взрыве внутри здания размером $A \times B \times H$, можно определить по формулам:

длина завала $A_{\text{зав}}$, м

$$A_{3aB} = 2L + A,$$

ширина завала $B_{\text{зав}}$, м

$$B_{\text{3aB}} = 2L + B$$
,

где L – дальность разлета обломков, принимаемая равной половине высоты здания (L = H/2) (рис. 3.1).

При внешнем взрыве размеры завала определяют по формулам

$$A_{3B} = L + A;$$

$$B_{3B} = L + B.$$

Для определения высоты завала на 100 м^3 строительного объема здания (табл.); k – константа, равная k = 2 – для взрыва вне здания и k = 2,5 – для взрыва внутри здания.

Объемно-массовые характеристики завалов

Тип здания	Плотность α, м ³ /100 м ³	Удельный объем γ, м ³ /100 м ³	Объемный вес ρ, т/м ³		
Производственные здания					
Одноэтажное легкого типа	40	14	1,5		
Одноэтажное среднего типа	50	16	1,2		
Одноэтажное тяжелого типа	60	20	1,0		
Многоэтажное	40	21	1,5		
Смешанного типа	45	22	1,4		
Ж	илые здания беск	аркасные			
Кирпичное	30	36	1,2		
Мелкоблочное	30	36	1,2		
Крупноблочное	30	36	1,2		
Крупнопанельное	40	42	1,1		

Для ориентировочного определения безвозвратных потерь $N^{\text{безв}}$, чел., населения (персонала) вне зданий и убежищ можно использовать формулу

$$N^{\text{безв}} = PG_{\text{THT}}^{2/3},$$

где P — плотность населения (персонала), тыс. чел./км²; $G^{\text{тнт}}$ — тротиловый эквивалент, т.

Санитарные потери $N^{\text{сан}}$, чел., принимаются равными

$$N^{\text{cah}} = (3...4)N^{\text{безв}},$$

Общие потери $N^{\text{общ}}$, чел.

$$N^{\text{общ}} = N^{\text{безв}} + N^{\text{сан}}$$
.

Жилые здания каркасные				
Со стенами из навесных панелей	40	42	1,1	
Со стенами из каменных материалов	40	42	1,1	

П р и м е ч а н и я. 1. Пустотность завала (α) – объем пустот на 100 м³ завала, м³. 2. Объемный вес завала (ρ) – вес 1 м³ завала, т/м³.

$$N^{\text{сан}} = \sum_{i=1}^{n} N_{i}^{\text{общ}} K_{2i},$$
 $N^{\text{без}} = N^{\text{общ}} - N^{\text{сан}},$

где N_i — количество персонала в i-м здании, чел.; n — число зданий (сооружений) на объекте; $N_i^{\text{общ}}$ — общие потери при разрушении i-го здания; K_{1i} , K_{2i} — коэффициенты для нахождения потерь в i-м здании, определяемые по табл.

1 аолица э.10

Значения коэффициентов K_1, K_2

Степень разрушения зданий	K_1	K_2
Слабая	0,08	0,03
Средняя	0,12	0,09
Сильная	0,8	0,25
Полная	1	0,3

Предотвращение взрывов в помещениях

- В помещении основным параметром, определяющим избыточное давление, является отношение площади пламени к площади проема.
- Давление на стене, противоположной проему, всегда выше, чем на других стенах. Если помещение сообщается через проем с другим помещением, то происходит сильная турбулизация среды, вызывающая резкое увеличение площади горения во втором помещении, давление там оказывается в 2 раза выше.
- Происходит повышение интенсивности взрывного горения и как следствие к увеличению нагрузок на строительные конструкции. Необходимо такое размещения оборудования, чтобы оно не являлось препятствием для взрывной волны и не увеличивало давление.

- Взрывное горение увеличивается в коридоре. Здесь пламя непрерывно ускоряется, в следствии шероховатости стенок.
- В коридорах необходимо использовать обтекатели, не допускать установки оборудования с острыми кромками. Сообщающие помещения защищать прочными дверями.
- Для защиты здания от внутренних взрывов необходимо вывести энергию взрыва в окружающую атмосферу, за пределы помещения с помощью сбросных отверстий. Для этого предусматривать шлюзование.
- Чтобы снизить давление до безопасного уровня, можно использовать оконные проемы. Необходимо, чтобы остекление разрушалось как можно раньше при меньших давления в помещении, использовать тонкие стекла с большими пролетами рам.