Способы извлечения квадратных корней из многозначных чисел без калькулятора

ТАБЛИЦА КВАДРАТОВ ДВУЗНАЧНЫХ ЧИСЕЛ

/	1	2	3	4	5	6	7	8	9
1	121	144	169	196	225	256	289	324	361
2	441	484	529	576	625	676	729	784	841
3	961	1024	1089	1156	1225	1296	1369	1444	1521
4	1681	1764	1849	1936	2025	2116	2209	2304	2401
5	2601	2704	2809	2916	3025	3136	3249	3364	3481
6	3721	3844	3969	4096	4225	4356	4489	4624	4761
7	5041	5184	5329	5476	5625	5776	5929	6084	6241
8	6561	6724	6889	7056	7225	7396	7569	7744	7921
9	8281	8464	8649	8836	9025	9216	9409	9604	9801

Канадский метод	Формула Древнего Вавилона	Разложение на множители
$\sqrt{\mathbf{X}} = \sqrt{\mathbf{S}} + (\mathbf{X} - \mathbf{S}) \div (2\sqrt{\mathbf{S}})$, где X - число, из которого необходимо извлечь квадратный корень, а S — число ближайшего точного квадрата.	$\sqrt{c} = \sqrt{a^2 + b} = a + \frac{b}{2a}$ Число с представлено в виде суммы $a^2 + b$, гдеа 2 ближайший к числу с точный квадрат натурального числаа $(a^2 < c)$	 1)Разложите подкоренное число на множители. 2)Продолжайте раскладывать числа на множители, пока под корнем не останется произведение 2-ух одинаковых чисел и других чисел. 3) Два одинаковых множителя представляем в виде числа во второй степени и выносим из- под знака корня (√a = √a² = a)
Пример 1: $\sqrt{1700} = \sqrt{1600} + (1700 - 1600)$ $\div (2\sqrt{1600})$ $= 40 + 100 \div (2 \times 40)$ $= 40 + 100 \div 80$ $= 40 + 1.25 = 41.25$	Пример 1: $\sqrt{87} = \sqrt{81+6} = \sqrt{9^2+6} = 9 + \frac{6}{2\times 9} = 9 + \frac{6}{18}$ $= 9+0. 3 \approx 9. 3 $	Пример 1: $\sqrt{180} = \sqrt{2 \times 90} = $ $\sqrt{2 \times 2 \times 45} = \sqrt{2^2 \times 45} = 2\sqrt{45} = 2\sqrt{3 \times 15}$ $= 2\sqrt{3 \times 3 \times 5} = 2\sqrt{3^2 \times 5}$ $= 2 \times 3\sqrt{5} = 6\sqrt{5}$
Пример 2: $\sqrt{2916} = \sqrt{2916} + (2916 - 2916)$ $\div (2\sqrt{2916})$ $= 54 + 0 \div (2 \times 54)$ $= 54 + 0 \div 108 = 54 + 0$ = 54	Пример 2: $\sqrt{1700} = \sqrt{1600 + 100} = \sqrt{40^2 + 100}$ $= 40 + \frac{100}{2 \times 40} = 40 + \frac{100}{80}$ = 40 + 1.25 = 41.25	Пример 2: $\sqrt{2916} = \sqrt{1458 \times 2} = \sqrt{729 \times 2 \times 2}$ $= \sqrt{729 \times 2^2} = 2\sqrt{729}$ $= 2\sqrt{243 \times 3} = 2\sqrt{81 \times 3 \times 3}$ $= 2\sqrt{81 \times 3^2} = 2 \times 3\sqrt{81}$ $= 6\sqrt{81} = 6 \times 9 = 54$
	Пример 3: $\sqrt{2916} = \sqrt{2916 + 0} = \sqrt{54^2 + 0} = 54 + \frac{0}{2 \times 54}$ $= 54 + \frac{0}{108} = 54 + 0 = 54$	

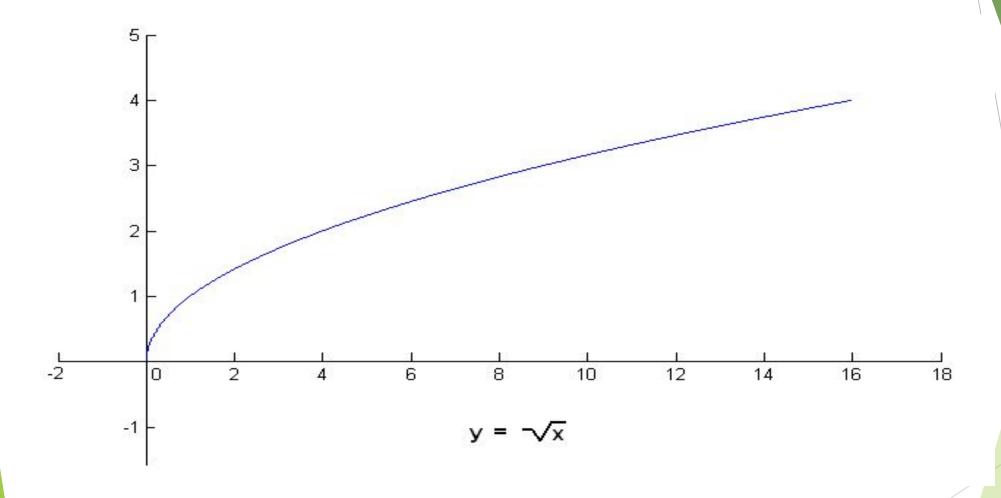


График функции $y = \sqrt{x}$

Разложение на множители

- Разложите подкоренное число на множители.
- Продолжайте раскладывать числа на множители, пока под корнем не останется произведение 2-ух одинаковых чисел и других чисел.
- 3) Два одинаковых множителя представляем в виде числа во второй степени и выносим из- под знака корня ($\sqrt{a} = \sqrt{a^2} = a$)

Пример 1:

$$\sqrt{180} = \sqrt{2 \times 90} =
\sqrt{2 \times 2 \times 45} = \sqrt{2^2 \times 45} = 2\sqrt{45} = 2\sqrt{3 \times 15}
= 2\sqrt{3 \times 3 \times 5} = 2\sqrt{3^2 \times 5}
= 2 \times 3\sqrt{5} = 6\sqrt{5}$$

Пример 2: $\sqrt{2916} = \sqrt{1458 \times 2} = \sqrt{729 \times 2 \times 2}$ $= \sqrt{729 \times 2^2} = 2\sqrt{729}$ $= 2\sqrt{243 \times 3} = 2\sqrt{81 \times 3 \times 3}$ $= 2\sqrt{81 \times 3^2} = 2 \times 3\sqrt{81}$ $= 6\sqrt{81} = 6 \times 9 = 54$

Канадский метод

 $\sqrt{\mathbf{X}} = \sqrt{\mathbf{S}} + (\mathbf{X} - \mathbf{S}) \div (2\sqrt{\mathbf{S}})$, где X - число,

из которого необходимо извлечь квадратный корень, а S — число ближайшего точного квадрата.

Пример 1:

$$\sqrt{1700} = \sqrt{1600} + (1700 - 1600)
\div (2\sqrt{1600})
= 40 + 100 ÷ (2 × 40)
= 40 + 100 ÷ 80
= 40 + 1.25 = 41.25$$

Пример 2:

$$\sqrt{2916} = \sqrt{2916} + (2916 - 2916)
\div (2\sqrt{2916})
= 54 + 0 ÷ (2 × 54)
= 54 + 0 ÷ 108 = 54 + 0
= 54$$

Формула Древнего Вавилона

$$\sqrt{c} = \sqrt{a^2 + b} = a + \frac{b}{2a}$$

Число с представлено в виде суммы $a^2 + b$, где a^2 ближайший к числу с точный квадрат натурального числаа $(a^2 < c)$

Пример 1:

$$\sqrt{87} = \sqrt{81+6} = \sqrt{9^2+6} = 9 + \frac{6}{2 \times 9} = 9 + \frac{6}{18}$$

= 9 + 0. |3| \approx 9. |3|

Пример 2:

$$\sqrt{1700} = \sqrt{1600 + 100} = \sqrt{40^2 + 100}$$

$$= 40 + \frac{100}{2 \times 40} = 40 + \frac{100}{80}$$

$$= 40 + 1.25 = 41.25$$

Пример 3:

$$\sqrt{2916} = \sqrt{2916 + 0} = \sqrt{54^2 + 0} = 54 + \frac{0}{2 \times 54}$$
$$= 54 + \frac{0}{108} = 54 + 0 = 54$$

СПАСИБО ЗА ВНИМАНИЕ!