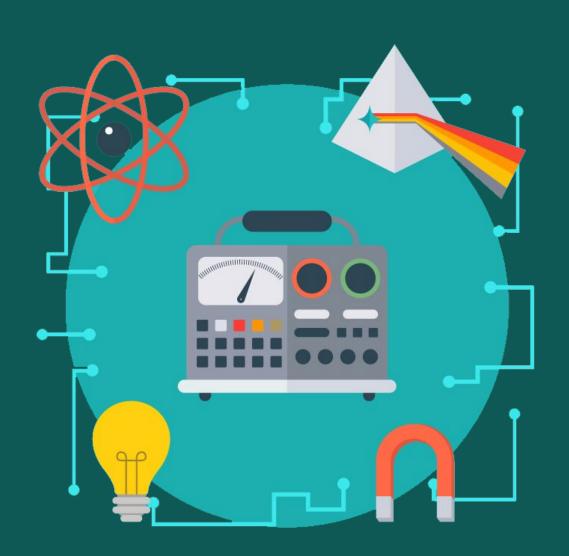
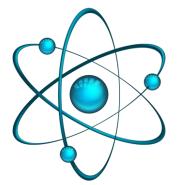
ПРАКТИЧЕСКАЯ ФИЗИКА



Доцент кафедры экспериментальной физики Ерина Марина Васильевна

Лекция № 3 Представление результатов эксперимента

- •Сравнение измеренных значений
- •Действия над приближенными числами
- •Основные требования, предъявляемые к построению графиков
- •Содержание отчета



Сравнение измеренных значений

Различие между результатами - это разность между двумя измеренными значениями одной и той же величины.

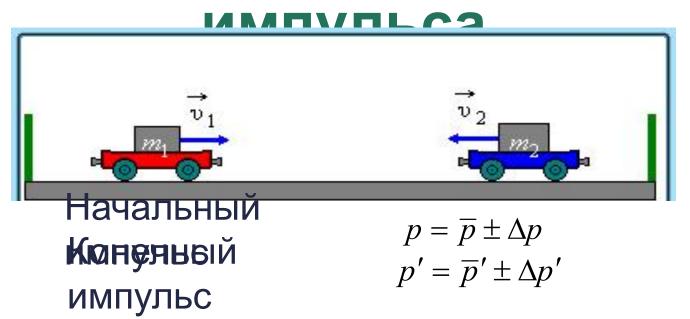
вероятные интервалы значительно отличаются

Пример: 31±2 Ом и 45±4 Ом

вероятные интервалы перекрываются

Пример: 40±5 Ом и 42±4 Ом

Опыт с двумя тележками по проверке закона сохранения



p (±0,04)	p'(±0,06)	p-p'
1,49	1,56	-0,07
2,10	2,12	-0,02
1,16	1,05	0,11

Наилучшая оценка $\overline{p}-\overline{p}'$

Наибольшее вероятное значение разности будет $p=\overline{p}+\Delta p$ и $p'=\overline{p}'-\Delta p'$

при т.
$$\left(\overline{p}-\overline{p}'\right)_{\max}=\left(\overline{p}-\overline{p}'\right)+\left(\Delta p+\Delta p'\right)$$
 e.

Наименьшее вероятное значение разности будет $p = \overline{p} - \Delta p \quad \text{и} \quad p' = \overline{p}' + \Delta p'$ при т

T. $(\overline{p} - \overline{p}')_{\min} = (\overline{p} - \overline{p}') - (\Delta p + \Delta p')$ $p - p' = (\overline{p} - \overline{p}') \pm (\Delta p + \Delta p')$

Погрешность разности есть сумма абсолютных $\Delta p + \Delta p'$ погрешностей

p (±0,04)	p'(±0,06)	p-p'(±0,1)
1,49	1,56	-0,07
2,10	2,12	-0,02
1,16	1,05	0,11

По сравнению с погрешностью все значения разностей импульсов не отличаются от нуля

Некоторые простые правила вычисления ошибок в косвенных

измерениях

Вид	Абсолютная	Относительная погрешность
зависимости	погрешность	
x+y	$\Delta x + \Delta y$	$\frac{\Delta x + \Delta y}{x + y}$
x-y	$\Delta x + \Delta y$	$\frac{\Delta x + \Delta y}{x - y}$
$x \cdot y$	$x \cdot \Delta y + y \cdot \Delta x$	$\frac{\Delta x}{x} + \frac{\Delta y}{y}$
x/y	$\frac{x \cdot \Delta y + y \cdot \Delta x}{y^2}$	$\frac{\Delta x}{x} + \frac{\Delta y}{y}$

Пример:

Решение:

а) q_{max} =10·20=200. Наибольшее вероятное значение q_{max} = 11·21=231; наименьшее вероятное значение q_{min} = 9·19=171.

Правило

$$q = x \cdot y \cdot \left(1 \pm \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)\right) \tag{*}$$

дает $q=200\pm30$, что хорошо согласуется с полученными значениями.

б) Наибольшее вероятное значение q_{max} =18·35=630; наименьшее вероятное значение q_{min} =2·5=10. Правило (*) дает q=200 \pm 300 (т.е. q_{max} =500; q_{min} = -100).

Причина столь сильного расхождения состоит в том, что правило (*) применимо только тогда, когда относительные погрешности малы по сравнению с единицей. Это условие (которое обычно реализуется на практике) в данном случае нарушено.

Действия над приближенными числами

Правило 1. При сложении и вычитании приближенных чисел при записи результата следует сохранять столько десятичных знаков, сколько их в исходном приближенном числе с наименьшим количеством десятичных знаков.

Пример:

 $6,28 + 13,1 + 5,482 = 24,862 \approx 24,9.$

Правило 2. При сложении и вычитании приближенных чисел в полученном результате по правилам округления нужно отбрасывать цифры тех разрядов справа, в которых отсутствуют значащие цифры хотя бы в одном из данных приближенных чисел.

Пример:

 $0,184 + 120,71 + 215 + 62,0 = 397,894 \approx 398.$

Правило 3. При умножении и делении в результате следует сохранять столько значащих цифр, сколько их в приближенном числе, данном с наименьшим количеством значащих цифр.

Пример:

 $1,5 \cdot 25 = 37,5 \approx 38$

Правило 4. При возведении числа в квадрат и куб в результате следует сохранять столько значащих цифр, сколько их в возводимом в степень приближенном числе.

Пример:

 $2,5^2 = 6,25 \approx 6,3$

Правило 5. При извлечении квадратного и кубического корней в результате следует записывать столько же значащих цифр, сколько у подкоренного приближенного числа.

Пример:

$$\sqrt{3,2} \approx 1.8$$
; $\sqrt{8,0} \approx 2.8$; $\sqrt{16} \approx 4.0$

Правило 6. При вычислении промежуточных результатов следует брать на одну значащую цифру больше, чем рекомендуют предыдущие правила.

Замечание. В окончательном результате эту «запасную» цифру отбрасывают.

Правило 7. Данные, у которых больше десятичных знаков или значащих цифр, чем у других, следует предварительно округлять, сохраняя лишь одну запасную цифру.

Пример:

$$13,5955 \cdot 25 \approx 13,6 \cdot 25 = 340 \approx 0,34 \cdot 10^3$$

Правило 8. Если угол задан с точностью до градусов, то у значения тригонометрической функции следует сохранять две значащие цифры.

Пример:

$$\frac{\sin 18^{\circ}}{\sin 12^{\circ}} \approx \frac{0,309}{0,208} \approx 1,49 \approx 1,5.$$

Правило 9. Если численное значение тригонометрической функции имеет не менее двух значащих цифр, то значение соответствующего угла записывают с точностью до градусов.

Пример:

$$sin\alpha = 0.12, \alpha \approx 7^{\circ}; tg\beta = 0.716, \beta \approx 36^{\circ}$$

Основные требования, предъявляемые к построению графиков

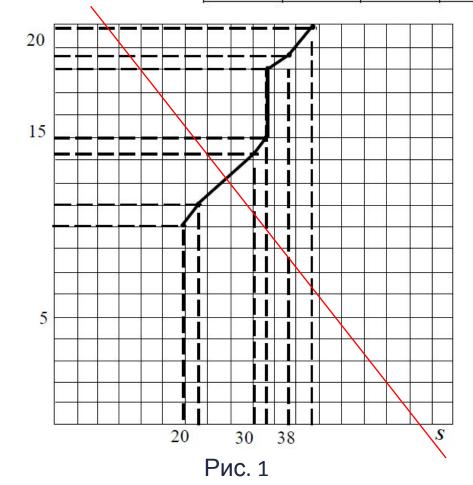
- 1. Графики строят на бумаге (лучше миллиметровой) линейкой и карандашом, либо с помощью специальных компьютерных программ для построения графиков (затем распечатываются). Готовый график должен быть вложен в отчет по лабораторной работе. Размер графика должен быть не меньше листа А5.
- 2. На координатных осях должны быть указаны обозначения откладываемых величин и единицы их измерения.
- 3. Начало координат при необходимости может не совпадать с нулевыми значениями величин. Его выбирают таким образом, чтобы поверхность бумаги была использована максимально.
- 4. Экспериментальные точки изображаются четко и крупно в виде кружков, крестиков, разноцветных точек и т.п.

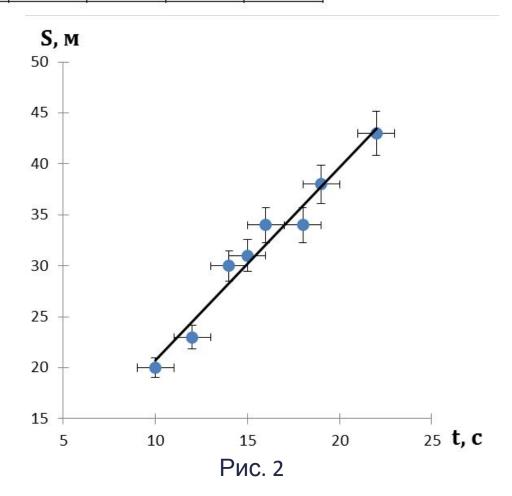
- 5. Масштабные деления на координатных осях следует наносить равномерно. Координаты экспериментальных точек на осях не указывают, а линии, определяющие эти координаты, не проводят.
- 6. Масштаб выбирают таким образом, чтобы:
- а. Кривая была равномерно растянута вдоль обеих осей (если график представляет собой прямую, то угол ее наклона к осям должен быть близок к 45°).
- b. Положение любой точки можно было определить легко и быстро. Масштаб по осям графика должен быть кратен 2, 5, 10, 50 и т. д. значениям единиц измеренной величины.
- 7. Учитывая, что экспериментальные данные содержат определенную случайную погрешность, кривую (прямую), изображающую экспериментальную зависимость, следует проводить не по точкам, а между ними так, чтобы количество точек по обе стороны от нее было одинаковым. Кривая должна быть плавной.
- 8. На графике необходимо отложить погрешность измерения величин (доверительный интервал). Делается это с помощью вертикальных и горизонтальных отрезков, симметрично расположенных относительно экспериментальных точек.

Пусть требуется построить график зависимости пути от времени S=f(t) при равномерном движении тела. Результаты измерений приведены в

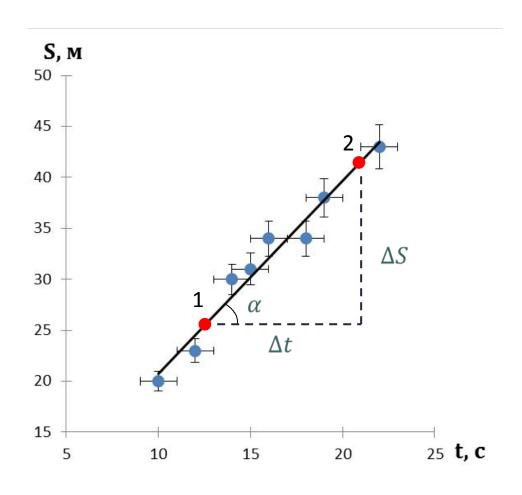
таблице:

t, c	10	12	14	15	16	18	19	22
Ѕ, м	20	23	30	31	34	34	38	43





Что можно определить из графиков?



$$S = S_0 + V_0 t$$

$$S_1 = S_0 + V_0 t_1$$

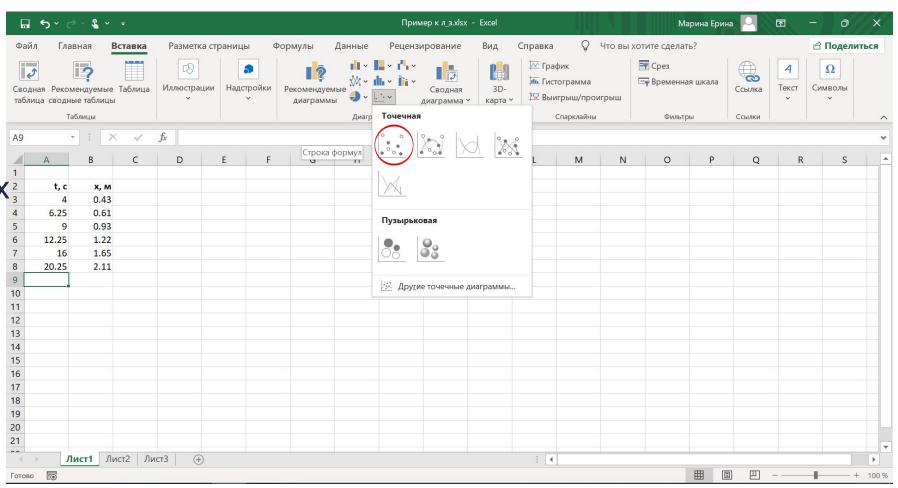
$$S_2 = S_0 + V_0 t_2$$

$$\Delta S = V_0 \Delta t \longrightarrow V_0 = \frac{\Delta S}{\Delta t}$$

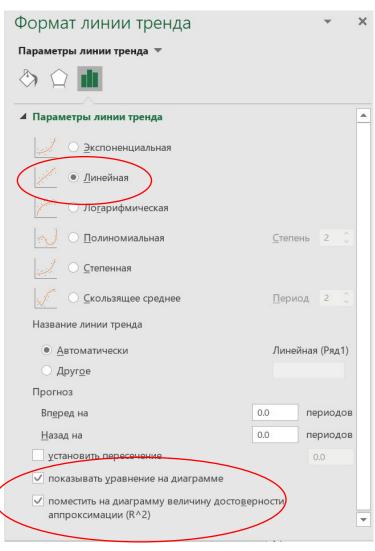
$$tg\alpha = \frac{\Delta S}{\Delta t} \longrightarrow V_0 = tg\alpha$$

Построение графиков с помощью MS Excel

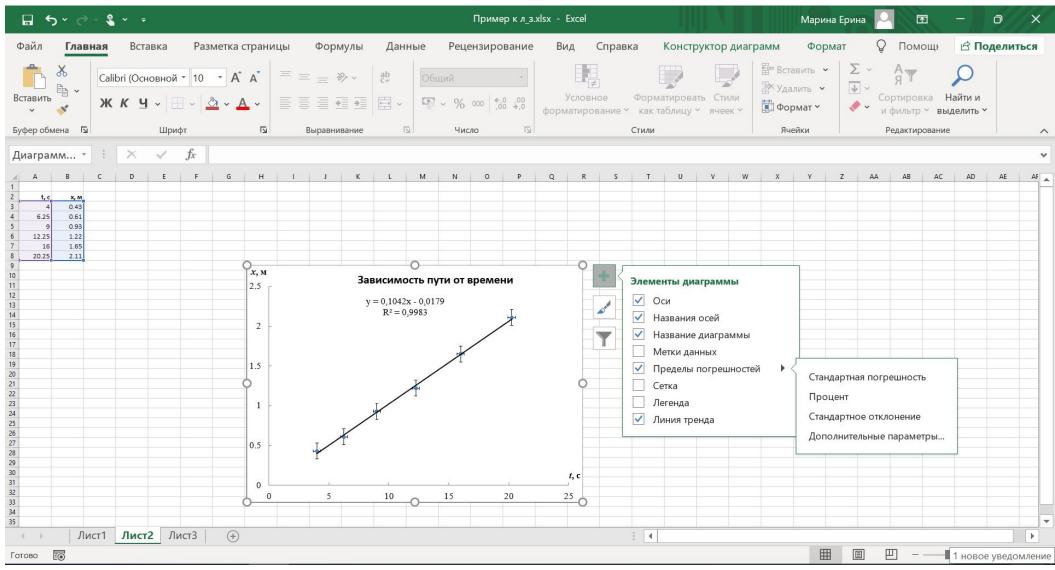
Для построения графиков при обработке экспериментальных результатов следует выбирать опцию Точечная с маркерами.



Добавить линию тренда (правой кнопкой мыши на любой точке)



Добавить интервалы ошибок



Алгоритм построения графика в MS Excel

- □ Занести данные в таблицу MS Excel
- □ Выбрать необходимый диапазон и на вкладке «Вставка» выбрать «Диаграмма» «Точечная диаграмма»
- □ Подписать оси и диаграмму.
- □ Правой кнопкой мыши на любой точке добавить линию тренда, в раскрывающемся окне добавить параметр линии, указать уравнение и величину достоверности аппроксимации R².
- □ Добавить интервалы погрешностей.

Пример:

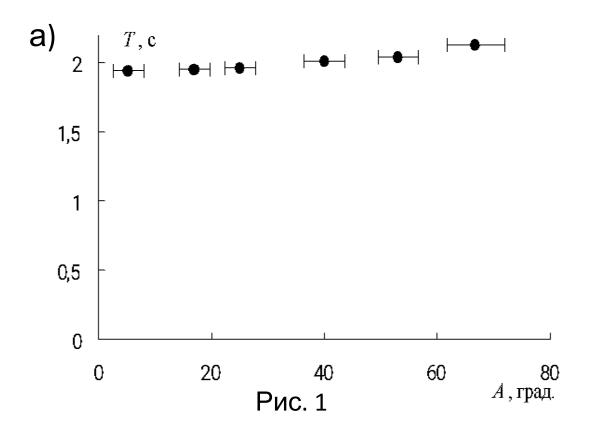
а) В эксперименте с математическим маятником студент решает проверить, действительно ли период Т не зависит от амплитуды А (определенной как наибольший угол, на который отклоняется маятник от вертикали во время его колебаний). Он получает результаты, представленные в таблице. Постройте график зависимости Т от А. Обратите внимание на выбор масштаба. Должен ли студент сделать вывод о том, что период не зависит от амплитуды?

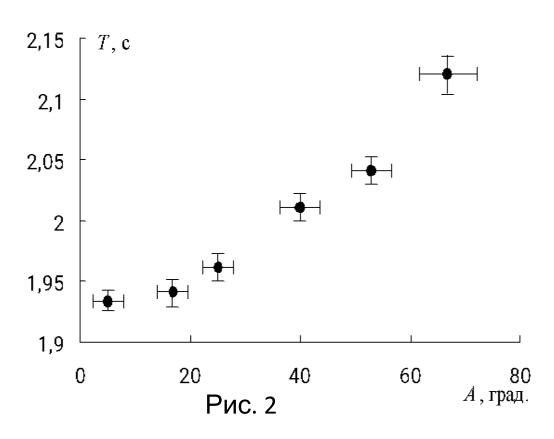
б) Рассмотрите как изменились бы результаты пункта а), если все измеренные

значения T имели погрешность $\pm 0,3$ с.

	Период Т, с
5±2	1,932±0,005
17±2	1,94±0,01
25±2	1,96±0,01
40±4	2,01±0,01
53±4	2,04±0,01
67±6	2,12±0,02

Решение:



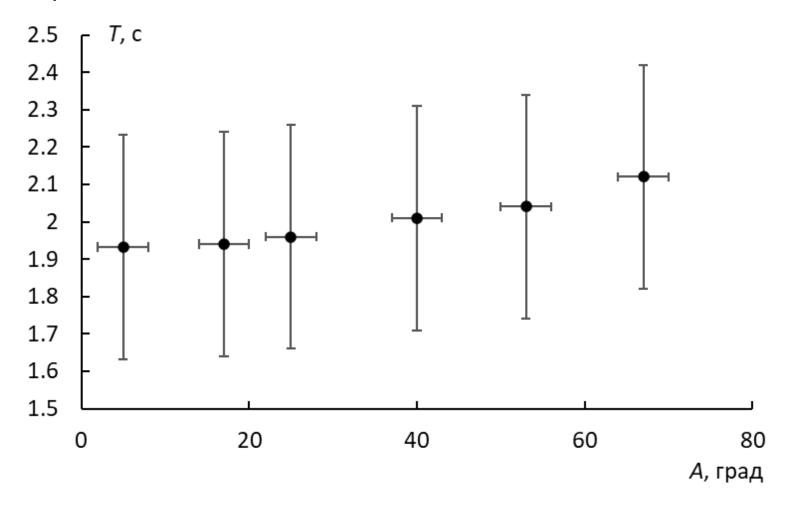


Вывод: Период не зависит от амплитуды

Вывод: Период зависит от амплитуды

Важно! Следует тщательно анализировать, какой выбор осей координат будет наиболее подходящим для данного конкретного случая.

б) Если перечертить оба графика для случая, когда ошибки равны 0,3 с (вверх и вниз), то было бы ясно, что T не зависит от A.



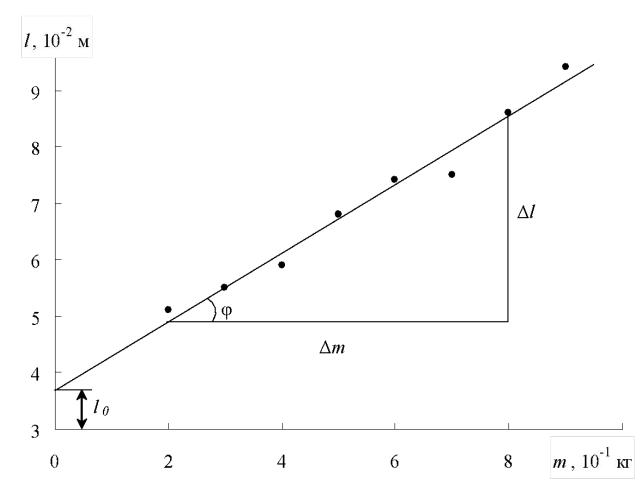
Пример:

Чтобы определить коэффициент упругости k пружины, студент подвешивает к ней различные массы m и измеряет соответствующие длины l. Его результаты приведены в таблице. Так как сила mg равна $k(l-l_0)$, где l_0 — длина пружины в нерастянутом состоянии, то эти данные должны ложиться на линию $l=l_0+\left(\frac{g}{k}\right)m$. Найти собственную длину пружины l_0 и коэффициент упругости k.

200	5,1
300	5,5
400	5,9
500	6,8
600	7,4
700	7,5
800	8,6
900	9,4

Решение:

2	5,1
3	5,5
4	5,9
5	6,8
6	7,4
7	7,5
8	8,6
9	9,4



Исходя из того, что теоретическая зависимость должна быть линейной, линию необходимо проводить между экспериментальными точками, а не соединять точки

ломаной линией!
$$k = \frac{g\Delta m}{\Delta l} = 9.8 \cdot \frac{(8-2) \cdot 10^{-1}}{(8.5-4.9) \cdot 10^{-2}} = 163 \frac{\text{H}}{\text{M}}$$

$$l_0 = 3.7 \cdot 10^{-1} \text{ M}$$

Содержание отчета

- □ Название лабораторной работы
- □ Кем выполнена
- □ Цель работы
- □ Оборудование и материалы
- □ Необходимые таблицы, расчеты, графики
- □ Ответ, погрешности
- □ Выводы

Примерная форма отчета

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1

Исследование колебательного движения математического маятника

выполненной студентом 1 курса, группы ФИЗ-6-о-21 Ивановым И.И.

24.09.2021

Цель работы: <u>Изучить колебательное движение математического маятника, определить ускорение свободного падения</u>

Оборудование и материалы: грузы разной массы, одинаковой формы; штатив; нить; секундомер

 $3a\partial a$ ние 1. Исследование периода колебаний математического маятника в зависимости от массы груза

Таблица 1.

Вывод:

Задание 2. Исследование периода колебаний математического маятника в зависимости от длины

Таблица 2.

График зависимости (прилагается на миллиметровой бумаге)

Вычисление ускорения свободного падения по углу наклона прямой:

Ответ: $g = (10.2\pm0.5) \text{ m/c}^2$, $\varepsilon = 5\%$

Вывод: в работе определено ускорение свободного падения равное $g=(10,2\pm0,5)\,$ м/с², с относительной погрешностью $\varepsilon=5\%$

$$S = \frac{(\upsilon - \upsilon_o)}{2a}$$

$$Z = \frac{(\upsilon - \upsilon_o)}{2a}$$

$$N = N_o 2^{-t/T}$$

$$V_o = \frac{F}{S}$$

$$V_o = \frac{(\upsilon_o + \upsilon)}{1 + \upsilon_o \upsilon/c}$$

$$V_o = \frac{(\upsilon_o + \upsilon)}{1 + \upsilon/c}$$

$$V_o = \frac{(\upsilon/c}{1 + \upsilon/c}$$

$$V_o = \frac{(\upsilon/c}{1 + \upsilon/c}$$

$$V_o = \frac{(\upsilon/c}{1 + \upsilon/c})$$

$$V_o = \frac{(\upsilon/c}$$

$$\frac{V}{T}$$
 =const

$$P = \frac{m}{V}$$

$$P = mc = \frac{h}{\lambda} = \frac{E}{c} \qquad T = \frac{2\pi\sqrt{\ell}}{g}$$