
Сжатие данных

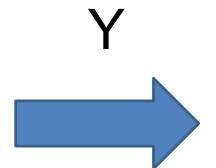
Информационные технологии. Лекция №2

Входно

Й

поток данных

Коэффициент


Сжатия
$$K = \frac{1}{V_{v}}$$

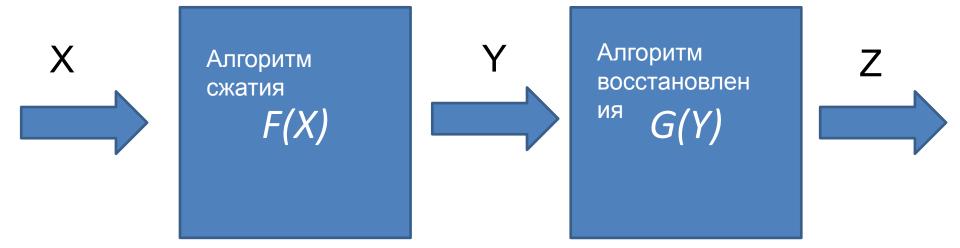
 V_{x} — объем входного потока

 $V_{\scriptscriptstyle \mathcal{V}}$ — объем выходного потока

Алгоритм сжатия

F(X)

Выходно


Й

поток данных

$$K \neq const$$

для разных данных могут быть:

$$K = 1$$

X = Z - cжатие без потерь $X \ne Z - cжатие c$ потерями

Пример сжатия с потерями (JPEG)

Статистические алгоритмы сжатия

Данных Для сжатия данных используется информация об *энтропии* входного потока.

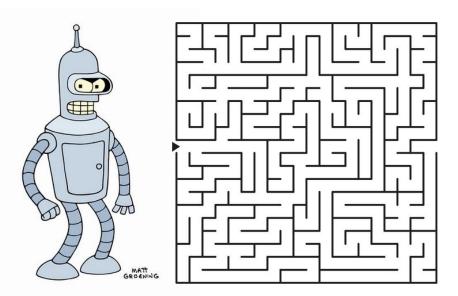
Используется частота/вероятность появления символа в потоке.

Буква	Частота %	Буква	Частота %	Буква	Частота %	Буква	Частота %
0	11,08	Р	4,45	Ы	1,96	X	0,89
E, Ë	8,41	В	4,33	Ь	1,92	Ш	0,81
Α	7,92	К	3,36	3	1,75	Ю	0,61
И	6,83	M	3,26	Γ	1,74	Э	0,38
Н	6,72	Д	3,05	Б	1,71	Щ	0,37
Т	6,18	П	2,81	Ч	1,47	Ц	0,36
С	5,33	у	2,80	Й	1,12	Ф	0,19
Л	5,00	Я	2,13	ж	1,05	Ъ	0,02

Примеры алгоритмов:

- Алгоритм Шеннона-Фано.
- Алгоритм Хаффмана.
- Арифметическое кодирование. 3.

Алгоритм Хаффмана


- 1. Определить частотную таблицу символов входного потока данных.
- Упорядочить таблицу по убыванию частоты символов.
- 3. Построить дерево Хаффмана по частотной таблице.
- Определить коды символов по дереву Хаффмана.
- Закодировать сообщение сформировать выходной поток.

Задача

Дистанционно управляемый робот должен пройти лабиринт (клеточный). Оптимальный алгоритм прохождения лабиринта известен, но необходимо его (алгоритм) закодировать.

Робот способен выполнять следующие команды:

- 1) Идти вперед (1 кл.)
- 2) Повернуть вправо на 90 градусов
- 3) Повернуть влево на 90 градусов
- 4) Повернуться на 180 градусов
- 5) Перепрыгнуть обрыв

111311111311511131111111211113113111

11131111211112111121111211121121131

11111111115111311121113113113121313

.

Решение

Количество шагов алгоритма (символов) - 223

Частотная

таблица Символ	Частота
1	175
2	20
3	25
4	0
5	3

Пример 2

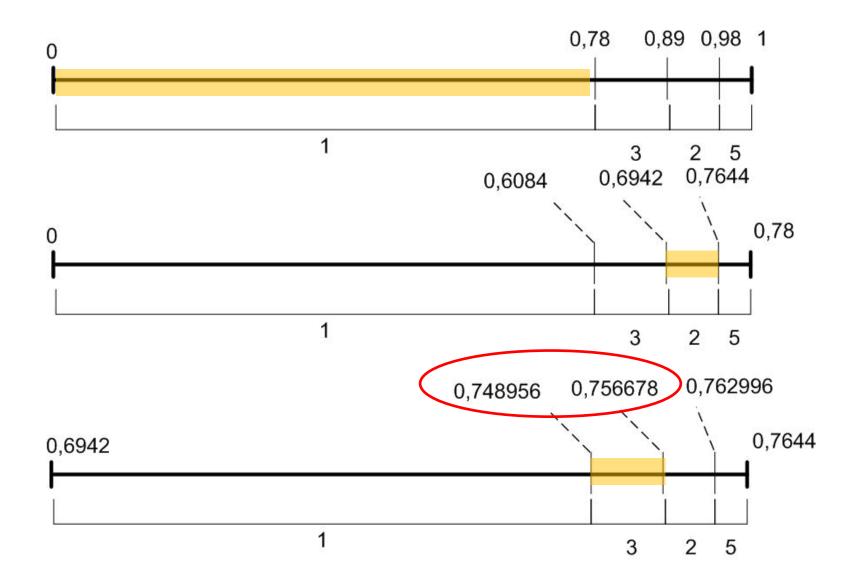
Количество шагов алгоритма (символов) - 223

Частотная

таблица Символ	Э Частота
1	80
2	50
3	60
4	0
5	33

Арифметическое кодирование

- 1. Определить вероятностную таблицу символов входного потока данных.
- 2. Разделить отрезок [0;1) на отрезки в соответствии с вероятностями символов.
- 3. Поочередно кодировать символы входного потока на получившихся отрезках.


Пример арифметического кодирования

Данные возьмем из предыдущей задачи (алгоритм Хаффмана).

Вероятностная таблица

Символ	Частот а	Вероятнос ть
1	175	0,78
2	20	0,09
3	25	0,11
4	0	0,02
5	3	0

Пример арифметического кодирования

RLE

Run-length encoding – кодирование длин серий

Пример:

Другие популярные алгоритмы

LZ77

LZW

BWT

DEFLATE