ЛОГИКА И ДОКАЗАТЕЛЬСТВО

Лутковская Е.А.

ЛОГИКА ВЫСКАЗЫВАНИЙ

Логика высказываний

Стандартными блоками формальной логики являются высказывания. Высказыванием называется утверждение, которое имеет значение истинности, т.е. может быть истинным (обозначается буквой И) или ложным (обозначается Л). Например,

- земля плоская;
- Сара доктор;
- 29 простое число.

Составные высказывания

Каждое из высказываний можно обозначить своей буквой. Пусть, например, P обозначает высказывание «земля плоская», Q — «Сара — доктор» и R — «29 — простое число».

Используя такие логические операции, как **не**, **или**, **и**, можно построить новые, так называемые *составные высказывания*, компануя более простые. Например,

- (**не** *P*) это высказывание «земля не плоская»;
- (*P* **или** *Q*) «земля плоская или Сара доктор»;
- (Р и Q) «земля плоская и Сара доктор».

Пример 2.1. Обозначим через P высказывание «догика — забава», а через Q — «сегодня пятница». Требуется выразить каж дое из следующих составных высказываний в символьной форме.

- (а) Логика не забава, и сегодня пятница.
- (б) Сегодня не пятница, да и логика не забава.
- (в) Либо логика забава, либо сегодня пятница.

Отрицание $\neg \overline{Q}$

Ompuцанием произвольного высказывания P называется высказывание вида (**не** P), чье истинностное значение строго противоположно значению P. Определяющая таблица истинности отрицания высказывания приведена в табл. 2.1.

Таблица 2.1

P	$(\mathbf{ne}\ P)$
И	Л
Л	И

Конъюнкция \cap (∧)&·

Конъюнкцией или логическим умножением двух высказываний P и Q называют составное высказывание вида (P и Q). Оно принимает истинное значение только в том случае, когда истинны обе его составные части. Такое определение хорошо согласуется с обычным пониманием союза «и» в разговорном языке. Соответствующая таблица истинности — табл. 2.2.

Таблица 2.2

P	Q	(Pи $Q)$
И	И	И
И	Л	$J\mathbf{I}$
Л	И	$J\mathbf{I}$
Л	Л	$\boldsymbol{J}\!\mathbf{I}$

Дизъюнкция U(V)+

Дизъюнкцией или логическим сложением двух высказываний P и Q называется составное высказывание (P или Q). Оно истинно, если хотя бы одна из ее составных частей имеет истинное значение, что в некотором смысле также согласуется с обыденным пониманием союза «или». Другими словами, (P или Q) означает, что «или P, или Q, или и то, и другое». Таблица истинности дизъюнкции обозначена как табл. 2.3.

Таблица 2.3

P	Q	(P или $Q)$
И	И	И
И	Л	И
Л	И	И
Л	Л	$J\mathbf{I}$

Эквивалентность⇔ →

■ Два составных высказывания, построенные из одних и тех же простых высказываний, но разными способами, называются логически эквивалентными, если они имеют одинаковые таблицы истинности на всех возможных наборах значений истинности простых высказываний, из которых они состоят.

P	Q	$P \leftrightarrow Q$
И	И	И
И	Л	Л
Л	И	Л
Л	Л	И

Пример

Пример 2.3. Показать, что высказывание (**не** $(P \mathbf{u} (\mathbf{ne} \ Q)))$ логически эквивалентно утверждению ((**не** $P) \mathbf{u}$ ли Q).

Решение. Заполним совместную таблицу истинности (табл. 2.4) для составных высказываний:

$$R = (\mathbf{He} \ (P \mathbf{u} \ (\mathbf{He} \ Q)))$$
 и $S = ((\mathbf{He} \ P) \mathbf{u}_{\mathcal{I}} \mathbf{u} \ Q).$

Вспомогательные колонки используются для построения обоих выражений из P и Q.

Таблица 2.4

P	Q	$\mathbf{He}\ P$	$\mathbf{He} \ Q$	P и (не Q)	R	S
И	И	Л	Л	Л	И	И
И	Л	Л	И	И	Л	Л
Л	И	И	$\boldsymbol{J}\mathbf{I}$	Л	И	И
Л	Л	И	И	Л	И	И

Две последние колонки таблицы и дентичны. Это означает, что высказывание R логически эквивалентно высказыванию S.

Импликация→⇒

В догике условное высказывание «если P, то Q» принято считать дожным только в том случае, когда npednocылка P истинна, а заключение Q дожно. В дюбом другом случае оно считается истинным.

Используя символ импликации « \Rightarrow », мы пишем $P\Rightarrow Q$ для обозначения условного высказывания «если P, то Q». Такая запись читается как «из P следует Q» или, «P влечет Q», или «P достаточно для Q», или «Q необходимо для P».

Таблица истинности импликации приведена в табл. 2.5.

Таблица 2.5

P	Q	$(P \Rightarrow Q)$
И	И	И
И	Л	Л
Л	И	И
Л	Л	И

Пример

Пример 2.4. Пусть P — (ложное) высказывание 1 = 5, Q — (тоже ложное) высказывание 3 = 7 и R — (истинное) утверждение 4 = 4. Показать, что условные высказывания: «если P, то Q» и «если P, то R», — оба истинны.

Решение. Если 1 = 5, то, прибавляя 2 к обеим частям равенства, мы получим, что 3 = 7. Следовательно, высказывание «если P, то Q» справедливо. Вычтем теперь из обеих частей равенства 1 = 5 число 3 и придем к -2 = 2. Поэтому $(-2)^2 = 2^2$, т. е. 4 = 4. Таким образом, «если P, то R» тоже верно.

Контр-позиция

Пример 2.5. Высказывание ((**не** Q) \Rightarrow (**не** P)) называется npo- musonoложным или контрапозитивным к высказыванию ($P \Rightarrow Q$). Показать, что ((**не** Q) \Rightarrow (**не** P)) логически эквивалентно высказыванию ($P \Rightarrow Q$).

Решение. Рассмотрим совместную таблицу истинности (табл. 2.6).

Таблица 2.6

P	Q	\mathbf{He} P	$\mathbf{He} Q$	$(P \Rightarrow Q)$	$((\mathbf{ne}\ Q)\Rightarrow (\mathbf{ne}\ P))$
И	И	Л	Л	И	И
И	Л	Л	И	$\boldsymbol{J}\mathbf{I}$	Л
Л	И	И	Л	И	И
Л	Л	И	И	И	И

Поскольку два последних столбца этой таблицы совпадают, то и высказывания, о которых идет речь, логически эквивалентны.

Конверсия импликации

- Высказывание Q→P называется конверсией импликации P→Q или обратной импликацией.
- Многие из ошибок в рассуждениях происходят от смешивания высказывания с его конверсией.
- Например, можно сказать, что если функция в данной точке имеет экстремум, то ее производная в этой точке равна нулю, но нельзя сказать, что если производная в данной точке равна нулю, то функция в этой точке имеет экстремум (м.б. это точка перегиба).

С импликацией связано понятие необходимых и достаточных условий в математике

Х является достаточным	Если имеет место X , то	Импликация $X \rightarrow Y$.	
условием для Y .	имеет место и У.		
Х является днеобходимым	Если имеет место У, то	Конверсия импликации	
условием для Y .	имеет место X .	$V \rightarrow X$.	
Х является необходимым и	Х имеет место тогда и	Двойная импликация или	
достаточным условием для	только тогда, когда имеет	эквивалентность ХУ.	
y.	место и У.		

Антиоперации

антиконъюнкция	Штрих Шеффера
антидизъюнкция	Стрелка Пирса ↓
антиэквивалентность	Сумма по модулю 2 🕀

Р	Q	$P \leftrightarrow Q$	Р или Q	PuQ	P Q	$P \!\!\downarrow \! Q$	F⊕Q
И	И	И	И	И	Л	Л	Л
И	Л	Л	И	Л	И	Л	И
Л	И	Л	И	Л	И	Л	И
Л	Л	И	Л	Л	И	И	Л

Тождественно истинные и ложные высказывания

- Составные высказывания, принимающие истинные значения при любых истинносных значениях своих компонент называются *тавтологиями* или *тождественно истинными*.
- Составные высказывания, принимающие ложные значения при любых значениях своих компонент называются *противоречивыми* или *тождественно ложными*.

Приоритет операций

Триоритет		я логичесь т скобок)	ких операций
Триоритет	Опера	ация	Обозначение
(Высший)	HE	NOT	¬, -
I (Высокий)	И	AND	^, •
II (Средний)	ИЛИ, Искл. ИЛИ	OR, XOR	∨, + ⊕
V (Низкий)	ЕСЛИ ТО	IMP	\rightarrow
/ (Низший)	Эквивалент	EQU	~

Следствие и совместность

- Из высказывания Р следует высказывание Q, если Q истинно всякий раз, когда истинно Р.
- Говорят, что два высказывания являются логически несовместными, если из истинности одного необходимо следует ложность другого.
- Для проверки совместности высказываний по таблице истинности смотрят, есть ли хоть одна строка, где все составные высказывания истины, и если есть, то они совместны.

Р	Q	$P \leftrightarrow Q$	Р или Q	PuQ	P/Q	$P \downarrow Q$	P⊕Q
И	И	и _	И	И	Л	Л	Л
И	Л	Л	И	Л	И	Л	И
Л	И	Л	И	Л	И	Л	И
Л	Л	И	Л	Л	И	И	Л

ПРЕДИКАТЫ И КВАНТОРЫ

Предикаты

Предикатом называется утверждение, содержащее переменные, принимающее значение истины или лжи в зависимости от значений переменных. Например, выражение «x — целое число, удовлетворяющее соотношению $x=x^2$ » является предикатом, поскольку оно истинно при x=0 или x=1 и ложно в любом другом случае.

Логические операции можно применять и к предикатам. В общем случае истинность составного предиката в конечном счете зависит от значений входящих в него переменных. Однако существуют некоторые, еще незнакомые Вам логические операторы (называемые кванторами), применение которых к предикатам превращает последние в ложные или истинные высказывания.

Кванторы

	Квантор всеобщности	Для всех (for All)
	Квантор существования	Существует (Exists)
Į.	Квантор единственности	Единственное
	Символ следствия	Следует, что
	Символ равносильности	Тогда и только тогда
	Символ принадлежности	Принадлежит (входит)
:	Символ разъяснения	Такой, что
	Символ пересечения (И)	И
	Символ объединения (ИЛИ)	Или

Пример

Пример 2.6. Какие из следующих высказываний истинны, а какие ложны?

- (a) Сумма внутренних углов любого треугольника равна 180°.
- (б) У всех кошек есть хвост.
- (в) Найдется целое число x, удовлетворяющее соотношению $x^2 = 2$.
- (г) Существует простое четное число.

Примеры

Пример 2.7. Обозначим через P(x) предикат «x — целое число и $x^2 = 16$ ». Выразите словами высказывание $\exists x \quad P(x)$ и определите его истинностное значение.

Пример 2.8. Пусть P(x) — предикат «x — вещественное число и $x^2+1=0$ ». Выразите словами высказывание $\exists x \ P(x)$ и определите его истинностное значение.

Отрицание высказывания из примера 2.8 записывается в следующем виде $\mathbf{ne} \exists x \ P(x)$. Это, естественно, истинное высказывание, которое означает, что не существует вещественного числа x, удовлетворяющего условию $x^2 + 1 = 0$. Иными словами, каково бы ни было вещественное $x, x^2 + 1 \neq 0$. В символьной форме это можно записать как $\forall x \mathbf{ne} \ P(x)$.

Отрицание кванторов

 $\mathbf{He} \; \exists \, x : \; P(x) \Leftrightarrow \forall \, x : \mathbf{He} \; P(x);$

не $\forall x : P(x) \Leftrightarrow \exists x : \mathbf{ne} \ P(x)$

Пример 2.9. Предположим, что x и y — вещественные числа, а P(x, y) обозначает предикат x + y = 0. Выразите каждое из высказываний словами и определите их истинность.

- (a) $\forall x \exists y \ P(x, y);$
- (6) $\exists y \quad \forall x \ P(x, y)$.

МЕТОДЫ ДОКАЗАТЕЛЬСТВ

При доказательстве теорем применяется логическая аргументация. Доказательства в информатике — неотъемлемая часть проверки корректности алгоритмов. Необходимость доказательства возникает, когда нам нужно установить истинность высказывания вида $(P \Rightarrow Q)$. Существует несколько стандартных типов доказательств, включающих следующие

- 1. Прямое рассуждение. Предполагаем, что высказывание P истинно и показываем справедливость Q. Такой способ доказательства исключает ситуацию, когда P истинно, а Q ложно, поскольку именно в этом и только в этом случае импликация ($P \Rightarrow Q$) принимает ложное значение (см. табл. 2.5 на стр. 27).
- 2. Обратное рассуждение. Предполагаем, что высказывание Q ложно и показываем ошибочность P. То есть, фактически, прямым способом проверяем истинность импликации ((**не** Q) \Rightarrow (**не** P)), что согласно примеру 2.5, логически эквивалентно истинности исходного утверждения ($P \Rightarrow Q$).

Типы доказательств

3. Метод «от противного». Предположив, что высказывание P истинно, а Q ложно, используя аргументированное рассуждение, получаем противоречие. Этот способ опять-таки основан на том, что импликация $(P\Rightarrow Q)$ принимает ложное значение только тогда, когда P истинно, а Q ложно.

Примеры

Пример 2.10. Покажите прямым способом рассуждений, что произведение xy двух нечетных целых чисел x и y всегда нечетно.

Пример 2.11. Пусть n — натуральное число. Покажите, используя обратный способ доказательства, что если n^2 нечетно, то и n нечетно.

Пример 2.12. Методом «от противного» покажите, что решение уравнения $x^2 = 2$ является иррациональным числом, т.е. не может быть записано в виде дроби с целыми числителем и знаменателем.

Решения

Решение. Прежде всего заметим, что любое нечетное число, и в частности x, можно записать в виде x=2m+1, где m — целое число. Аналогично, y=2n+1 с некоторым целым n.

Значит, произведение

$$xy = (2m+1)(2n+1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1$$

тоже является нечетным числом.

Решение. Отрицанием высказывания о нечетности числа n^2 служит утверждение « n^2 четно», а высказывание о четности n является отрицанием утверждения «число n нечетно». Таким образом, нам нужно показать прямым способом рассуждений, что четность числа n влечет четность его квадрата n^2 .

Так как n четно, то n=2m для какого-то целого числа m. Следовательно, $n^2=4m^2=2(2m^2)$ — четное число.

Решение. Здесь нам следует допустить, что решение x уравнения $x^2 = 2$ рационально, т. е. записывается в виде дроби $x = \frac{m}{n}$ с целыми m и n, причем $n \neq 0$. Предположив это, нам необходимо получить противоречие либо с предположением, либо с каким-то ранее доказанным фактом.

Как известно, рациональное число неоднозначно записывается в виде дроби. Например, $x=\frac{m}{n}=\frac{2m}{2n}=\frac{3m}{3n}$ и т. д. Однако можно считать, что m и n не имеют общих делителей. В этом случае неоднозначность записи пропадает.

Итак, предполагаем дополнительно, что дробь $x = \frac{m}{n}$ несократима (m и n не имеют общих делителей). По условию число x удовлетворяет уравнению $x^2 = 2$. Значит, $\left(\frac{m}{n}\right)^2 = 2$, откуда $m^2 = 2n^2$.

Из последнего равенства следует, что число m^2 четно. Следовательно, m тоже четно (см. упр. $a(\delta)$) и может быть представлено в виде m=2p для какого-то целого числа p. Подставив эту информацию в равенство $m^2=2n^2$, мы получим, что $4p^2=2n^2$, т. е. $n^2=2p^2$. Но тогда n тоже является четным числом. Таким образом, мы показали, что как m, так и m— четные числа. Поэтому они обладают общим делителем 2. Если же теперь вспомнить, что мы предполагали отсутствие общего делителя у числителя и знаменателя дроби $\frac{m}{n}$, то увидим явное противоречие.

Найденное противоречие приводит нас к однозначному выводу решение уравнения $x^2=2$ не может быть рациональным числом, т. е. оно иррационально.

Метод математической индукции

Компьютерную программу в информатике называют правильной или корректной, если она делает то, что указано в ее спецификации. Несмотря на то, что тестирование программы может давать ожидаемый результат в случае каких-то отдельных начальных данных, необходимо доказать приемами формальной логики, что правильные выходные данные будут получаться при любых вводимых начальных значениях. О доказательствах такого сорта будет рассказано в приложении, размещенном в конце этой главы.

Проверка корректности алгоритма, содержащего циклы, нуждается в довольно мощном методе доказательства, который называется «математическая индукция». Продемонстрируем преимущества этого важного метода, доказав корректность следующего рекуррентного алгоритма, определяющего максимальный элемент из набора $a_1, a_2, a_3, \ldots, a_n$ натуральных чисел.

Пример

```
\begin{aligned} \mathbf{begin} \\ i &= 0; \\ M &= 0; \\ \mathbf{while} \ i < n \ \mathbf{do} \\ \mathbf{begin} \\ j &= j+1; \\ M &= \max(M, \ a); \\ \mathbf{end} \\ \end{aligned}
```

j	M	$j \leq 4$?
0	0	Да
1	4	Да
2	7	Да
3	7	Да
4	8	Нет

Решение

Рассмотрим вводимый набор $a_1, a_2, a_3, \ldots, a_n$ длины n и обозначим через M_k значение переменной M после k-го прохода цикла.

- Если мы вводим набор a₁ длины 1, то цикл сделает только один проход и M присвоится наибольшее значение из 0 и a₁, которым, очевидно, будет a₁ (натуральные числа больше 0).
 В этом простом случае вывод будет правильным.
- 2. Если после k-го прохода цикла M_k наибольший элемент из набора a_1, a_2, \ldots, a_k , то после следующего прохода M_{k+1} будет равно $\max(M_k, a_{k+1})$, т. е. максимальному элементу набора $a_1, a_2, \ldots, a_k, a_{k+1}$.

Принцип математической индукции

- Проверить справедливость утверждения при n=1.
- Предположив, что утверждение верно при n=k, доказать, что оно верно при n=k+1.
- Тогда утверждение верно $\forall n \in \mathbb{N}$.

Принцип математической индукции

 $\Pi y cm b \ P(n) \ -- \ npedukam, \ onpedenehhый для всех натураль$ ных чисел <math>n.

Предположим, что

- 1. P(1) истинно u
- 2. $\forall k \geq 1$ импликация $(P(k) \Rightarrow P(k+1))$ верна.

 $Torda\ P(n)\ ucmuhho\ npu\ любом\ натуральном\ значении\ n.$

1+2+3+...+100= 1+2+...+n= Рачинский «Устный счет» (10²+11²+12²+12²+14²)/365

Пример

Пример 2.13. Докажите по индукции, что равенство

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

выполнено при всех натуральных n.

Решение. Пусть P(n) — предикат $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.

В случае n=1 левая часть равенства — просто 1, а вычисляя правую часть, получаем

$$\frac{1(1+1)}{2} = 1.$$

Следовательно, P(1) истинно.

Предположим теперь, что равенство $1+2+\cdots+k=\frac{k(k+1)}{2}$ имеет место для какого-то натурального числа k. Тогда

$$1 + 2 + \dots + k + (k+1) = (1 + 2 + \dots + k) + (k+1) =$$

$$= \frac{k(k+1)}{2} + (k+1) =$$

$$= \frac{1}{2} (k(k+1) + 2(k+1)) =$$

$$= \frac{1}{2} ((k+2)(k+1)) =$$

$$= \frac{(k+1)(k+2)}{2}.$$

Таким образом, при любом натуральном k импликация $P(k) \Rightarrow P(k+1)$

справедлива. Значит, по принципу математической индукции, предикат P(n) имеет истинное значение при всех натуральных n.

КОРРЕКТНОСТЬ АЛГОРИТМОВ

Приложение.

Корректность простого оператора

Чтобы доказать корректность алгоритма (иными словами, убедиться, что он делает именно то, что и предусмотрено), нам нужно проверить все изменения переменных, в нем используемых до, в течение и после работы алгоритма. Эти изменения и условия можно рассматривать как небольшие утверждения или предикаты.

Пусть P — предикат, истинный для входных данных алгоритма A, и Q — предикат, описывающий условия, которым должны удовлетворять выходные данные. Высказывание $\{P\}A\{Q\}$ означает, что «если работа алгоритма A начинается с истинного значения предиката P, то она закончится при истинном значении Q». Предикат P называется входным условием или предусловием, а Q — выходным

Задача 1. Докажите корректность алгоритма *Разность*.

```
Pазность begin z = x - y; end
```

Решение. В данном случае предусловием P являются равенства $x=x_1$ и $y=y_1$. Постусловие Q — это $z=x_1-y_1$. Предикат

$$\{P\}$$
 Разность $\{Q\}$

читается как «если $x=x_1$ и $y=y_1$, то $z=x_1-y_1$ ». Истинность последнего предиката легко проверяется подстановкой $x=x_1$ и $y=y_1$ в тело алгоритма, содержащего переменные z, x и y. С формальной точки зрения соотношения z=x-y, $x=x_1$ и $y=y_1$ влекут тождество $z=x_1-y_1$.

Корректность составного оператора

Когда в алгоритме A происходит много различных действий с переменными, мы разбиваем его на подходящие отрезки A_1, \ldots, A_n и доказываем цепочку утверждений вида

$${P} A_1 {Q_1}, {Q_1} A_2 {Q_2}, \ldots, {Q_{n-1}} A_n {Q},$$

где постусловие любого отрезка служит предусловием следующего.

Задача 2. Докажите правильность алгоритма «Квадратный многочлен».

```
Квадратный многочлен \{x -  вещественное число\} begin y = ax; y = (y + b)x; y = y + c; end \{y = ax^2 + bx + c\}
```

Решение. Разобьем алгоритм на кусочки, зафиксировав при этом обозначения пред- и постусловий.

$$P
ightarrow \ \{x = x_1\}$$
 $begin$
 $y = ax;$
 $Q_1
ightarrow \{y = ax_1 \text{ if } x = x_1\}$
 $y = (y + b)x;$
 $Q_2
ightarrow \{y = ax_1^2 + bx_1\}$
 $y = y + c;$
 end
 $Q
ightarrow \{y = ax_1^2 + bx_1 + c\}$

Подстановки, сделанные выше, показывают, что все высказывания

$$\{P\} \ \mathbf{y} := \mathbf{a}\mathbf{x} \ \{Q_1\},\ \{Q_1\} \ \mathbf{y} := (\mathbf{y} + \mathbf{b})\mathbf{x} \ \{Q_2\},\ \{Q_2\} \ \mathbf{y} := \mathbf{y} + \mathbf{c} \ \{Q\},\ -$$

верны. Следовательно, предикат

 $\{P\}$ Квадратный многочлен $\{Q\}$

истинен, т. е. алгоритм **Квадратный многочлен** корректен.

Корректность условного оператора

```
if условие then
              высказывание 1;
              else
              высказывание 2;
вводит предусловие P, а на выходе дает условие Q. Тогда следует
доказать истинность обоих предикатов
              \{P и условие\} высказывание 1 \{Q\}
И
            \{P \text{ и не (условие)}\}\  высказывание 2 \{Q\}.
```

```
egin{aligned} Modyjab \ \{x & -- вещественное число\} \ \mathbf{begin} \ \mathbf{if} \ x \geqslant 0 & \mathbf{then} \ abc = x; \ \mathbf{else} \ abs = -x; \ \mathbf{end} \ \{abs & -- модуль числа \ x\} \end{aligned}
```

Решение. Предусловием P в нашем алгоритме служит $\{x = x_1\}$, а соответствующим постусловием Q является $\{abs - - модуль числа <math>x\}$.

Предикат $\{P \ \mathbf{u} \ x \geqslant 0\}$ $abs := x \{Q\}$ имеет истинное значение, поскольку модуль неотрицательного числа x_1 совпадает с ним самим.

Предикат $\{P \text{ и не } (x \ge 0)\}$ $abs := -x \{Q\}$ тоже истинен, так как модуль отрицательного числа x_1 отличается от него знаком.

Корректность циклов

Использование пред- и постусловий при проверке алгоритмов, в которых участвуют циклы типа while ... do, довольно громоздко. Предпочтительнее доказывать корректность таких алгоритмов методом математической индукции.

В задаче 4 цикл for ограничен определенным числом итераций (проходов). В том случае, когда число петель цикла заранее не определено, как в цикле while ... do, при доказательстве индукцией следует предположить, что число проходов все же ограничено и показать правильность выходных данных. После чего необходимо будет проверить, что число петель такого цикла действительно конечно.

Задача 4. Докажите по индукции корректность алгоритма $Kea-\partial pam$.

Решение. Пусть P(n) обозначает предикат « $sq=n^2$ после n-го прохода цикла», а sq_k — значение переменной sq после k-го прохода цикла. Покажем, что

(1)
$$sq_1 = 1^2$$
;

(2) если
$$sq_k = k^2$$
, то $sq_{k+1} = (k+1)^2$.

Очевидно, что после первого прохода цикла $sq_1 = 1$ и пункт (1) выполнен. Предположим, что после k-ой петли цикла $sq_k = k^2$. Тогда после следующего прохода

$$sq_{k+1} = sq_k + 2(k+1) - 1 = k^2 + 2k + 1 = (k+1)^2$$
.

Таким образом, пункт (2) тоже имеет место.

Итак, мы установили, что P(1) истинно (п. (1)). Кроме того, по второму пункту импликация ($(P(k) \Rightarrow P(k+1))$ справедлива при любом $k \geqslant 1$. Следовательно, согласно принципу математической индукции, P(n) истинно для всех натуральных n.