

Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 196»

Решение уравнений и неравенств заданий С3

Л.В. Сантьева - учитель математики

Спецификация контрольных измерительных материалов для проведения в 2013 году единого государственного экзамена по МАТЕМАТИКЕ

- •Уровень сложности задания С3: П повышенный
- •Проверяемые требования (умения): уметь решать уравнения и неравенства
- •Примерное время выполнения задания учащимся 30 мин.
- •Изменения в структуре и содержании экзаменационной работы 2013 г. по сравнению с 2012 г. : без изменения сложности несколько расширена тематика задания С3 в этом задании может присутствовать система неравенств.

Демонстрационный вариант

контрольных измерительных материалов единого государственного экзамена 2013 года по математике

С3 Решите систему неравенств

$$4^{x} \le 9 \cdot 2^{x} + 22$$

$$\log_{3}(x^{2} - x - 2) \le 1 + \log_{3} \frac{x+1}{x-2}$$

Otbet: (2; log₂11]

Средние результаты выполнения заданий СЗ в 2012г.

	C3
Не приступали (в %)	62,19
Приступили, но получили 0 бал- лов (в %)	26,26
1 балл (в %)	7,88
2 балла (в %)	1,27
3 балла (в %)	2,39
Положительный результат (в %)	11,54

Критерии оценивания выполнения заданий C3 на EГЭ-2012:

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Обоснованно получены верные ответы в обоих неравенствах	2
Обоснованно получен верный ответ в одном неравенстве системы неравенств	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	3

Эти критерии сохранятся и в 2013 г.

Пример 1. С3 Решите систему неравенств

$$\begin{cases} 4^{\frac{x^2-2}{x^2+x+1}} + 3 \cdot 6^{\frac{x^2-2}{x^2+x+1}} \ge 4 \cdot 9^{\frac{x^2-2}{x^2+x+1}} \\ \log_{\frac{1}{3}} |x-2| - \log_{2-x} 3 \le 2 \end{cases}$$

Решение.

Решим первое неравенство системы
$$\begin{cases} \frac{x^2-2}{4^{\frac{x^2-2}{x^2+x+1}}} + 3 \cdot 6^{\frac{x^2-2}{x^2+x+1}} \geq 4 \cdot 9^{\frac{x^2-2}{x^2+x+1}} \\ \log_{\frac{1}{3}} |x-2| - \log_{2-x} 3 \leq 2 \end{cases}$$

Пусть
$$t = \frac{x^2 - 2}{x^2 + x + 1}$$
 , тогда $4^t + 3 \cdot 6^t - 4 \cdot 9^t \ge 0$; $\left(\frac{4}{9}\right)^t + 3 \cdot \left(\frac{6}{9}\right)^t - 4 \ge 0$;

$$\left(\frac{2}{3}\right)^{2t} + 3 \cdot \left(\frac{2}{3}\right)^{t} - 4 \ge 0;$$
 $\left(\frac{2}{3}\right)^{t} \le -4$ (решений нет) или $\left(\frac{2}{3}\right)^{t} \ge 1;$ $t \le 0$

Теперь решим неравенство
$$\frac{x^2-2}{x^2+x+1} \le 0$$
 $x^2 \le 2;$ $-\sqrt{2} \le x \le \sqrt{2}.$

Итак, решением первого неравенства является множество

$$\left[-\sqrt{2};\sqrt{2}\right]$$

Рассмотрим второе неравенство системы $\log_{\frac{1}{3}}|x-2|-\log_{2-x}3 \le 2$

Найдем ограничения на
$$x$$
:
$$\begin{cases} 2-x>0 \\ 2-x\neq 1; \\ x\neq 2 \end{cases} \begin{cases} x<2 \\ x\neq 1; \\ x\neq 2 \end{cases}$$

При
$$x < 2, x \ne 1$$
 $x - 2 < 0$ следовательно $|x - 2| = 2 - x$

Для таких значений х рассматриваемое неравенство будет иметь вид:

$$-\log_3(2-x) - \frac{1}{\log_3(2-x)} - 2 \le 0$$
 или $\log_3(2-x) + \frac{1}{\log_3(2-x)} + 2 \ge 0$

$$\log_3(2-x) + \frac{1}{\log_3(2-x)} + 2 \ge 0$$

Пусть
$$\log_3(2-x)=a$$
 , тогда $a+\frac{1}{a}+2\geq 0;$ $\frac{a^2+2a+1}{a}\geq 0;$ $\frac{(a+1)^2}{a}\geq 0.$

Решим последнее неравенство методом интервалов. Получим:

$$a > 0, \ a = -1$$

T.e.
$$\log_3(2-x) > 0;$$
 $2-x > 1;$ $x < 1.$

$$\log_3(2-x) = -1;$$
 $2-x = \frac{1}{3};$ $x = \frac{5}{3}.$

Решением второго неравенства является множество $(-\infty;1)$ \mathbb{Z} $\left\{\frac{5}{3}\right\}$

Пересечение решений обоих неравенств системы $\left[-\sqrt{2};1\right)$

OTBET:
$$\left[-\sqrt{2};1\right]$$

Пример 2. СЗ Решите систему неравенств

$$\begin{cases} 4 \cdot 4^{x} - 33 \cdot 2^{x} + 8 \le 0 \\ \log_{x^{2}} (x - 1)^{2} \le 1 \end{cases}$$

Решение:

Область определения системы задается условием:

$$x \neq 0, x \neq 1.$$

1. Решим *первое* неравенство системы заменой переменной:

$$4 \cdot 4^{x} - 33 \cdot 2^{x} + 8 \le 0$$

$$4 \cdot 2^{2x} - 33 \cdot 2^{x} + 8 \le 0, \quad 2^{x} = t$$

$$4 t^{2} - 33t + 8 \le 0 \quad \Leftrightarrow$$

$$4\left(t - \frac{1}{4}\right)(t - 8) \le 0 \quad \Leftrightarrow$$

$$\frac{1}{4} \le t \le 8$$

$$\frac{1}{4} \le 2^{x} \le 8 \quad \Leftrightarrow \quad 2^{-2} \le 2^{x} \le 2^{3} \quad \Leftrightarrow \quad -2 \le x \le 3$$

Итак, решением первого неравенства является множество [-2; 3]

2. Рассмотрим второе неравенство

$$\log_{x^2}(x-1)^2 \le 1$$

2.1. Пусть |x| > 1

При таком условии исходная система равносильна:

$$\begin{bmatrix}
-2 \le x < -1 \\
1 < x \le 3
\end{bmatrix}$$

$$(x-1)^2 \le x^2$$

$$\begin{bmatrix}
-2 \le x < -1 \\
1 < x \le 3
\end{bmatrix}$$

$$(x-1-x)(x-1+x) \le 0$$

$$\begin{bmatrix}
-2 \le x < -1 \\
1 < x \le 3
\end{cases}$$

$$2x - 1 \ge 0$$

$$\begin{bmatrix}
-2 \le x < -1 \\
1 < x \le 3
\end{cases}$$

$$x \ge \frac{1}{2}$$

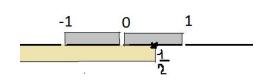
2.2 Пусть 0 < |x| < 1.

При таком условии исходная система равносильна

$$-1 < x < 0$$

$$0 < x < 1$$

$$x \le \frac{1}{2}$$



$$\begin{aligned}
-1 &< x < 0 \\
0 &< x \le \frac{1}{2}
\end{aligned}$$

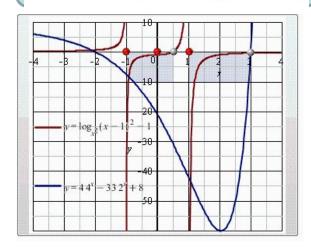
3. Объединим решения:

$$\begin{aligned}
-1 &< x < 0 \\
0 &< x \le \frac{1}{2} \\
1 &< x \le 3
\end{aligned}$$

ОТВЕТ:
$$x \in (-1;0) \cup (0;\frac{1}{2}] \cup (1;3].$$

$$\begin{cases} 4 \cdot 4^{x} - 33 \cdot 2^{x} + 8 \le 0 \\ \log_{x^{2}} (x - 1)^{2} \le 1 \end{cases}$$

ОТВЕТ:
$$x \in (-1;0) \cup (0;\frac{1}{2}] \cup (1;3].$$



Проверка

Замечание.

Хотя неравенства системы можно решать независимо друг от друга, но при верном использовании для решения одного из них результатов, полученных при решении другого, следует считать, что «Обоснованно получен верный ответ».

Задания для самостоятельного решения:

$$2^{2x+1} - 2^{x+2} - 2^x \le 3$$

$$\log_{x+\frac{2}{9}} 3 \le \log_{\sqrt{x}} 3$$

OTBET:
$$\cdot [\varepsilon_{2} gol : t) \cup (\frac{6}{7} : \frac{6}{4}] \cup [\frac{6}{1} : 0) \ni x$$

$$2^{4x} - 4^{x+3} \le 65$$

$$\log_{x+5} \left(\frac{3-x}{x}\right)^4 + \log_{x+5} \frac{x}{x-3} \le 3$$

OTBET: $[59 \text{ †Bo[$^{\epsilon}$}) \cap [t-$^{\epsilon}-] \cap (*-$^{\epsilon}-]) \ni x$

