

Биологические системы жизнеобеспечения (БСЖО) человека

Исследования звена высших растений БСЖО в условиях космического полета

В 80-е годы в Институте были начаты космические исследования применительно к созданию БСЖО космических экипажей. В ИМБП в кооперации с российскими и международными специалистами было создано оборудование, которое позволяло в условиях реального космического полета проводить биологические исследования растительных и животных организмов, возможных компонентов БСЖО, а также вести работы по созданию технологии их культивирования в невесомости. В период с 1990 г. по 2009 г. Проведено 20 экспериментов по изучению роста и развития высших растений 11ти сортов и видов в космических оранжереях «СВЕТ» (ОК «МИР») и «ЛАДА» (РС МКС) общей длительностью 1400 суток.

Оранжерейные устройства, использовавшиеся для экспериментов с высшими растениями на борту орбитальных станций «САЛЮТ»

ФИТОН ОАЗИС-М ОАЗИС-1

Оранжерея «СВЕТ», предназначенная для экспериментов с высшими растениями на борту ОК «МИР»

Разработана в рамках программы «Интеркосмос» специалистами ГНЦ РФ – ИМБП РАН совместно со специалистами ИКИ Болгарской АН

Штатное оборудование модуля «Кристалл ОК «МИР»

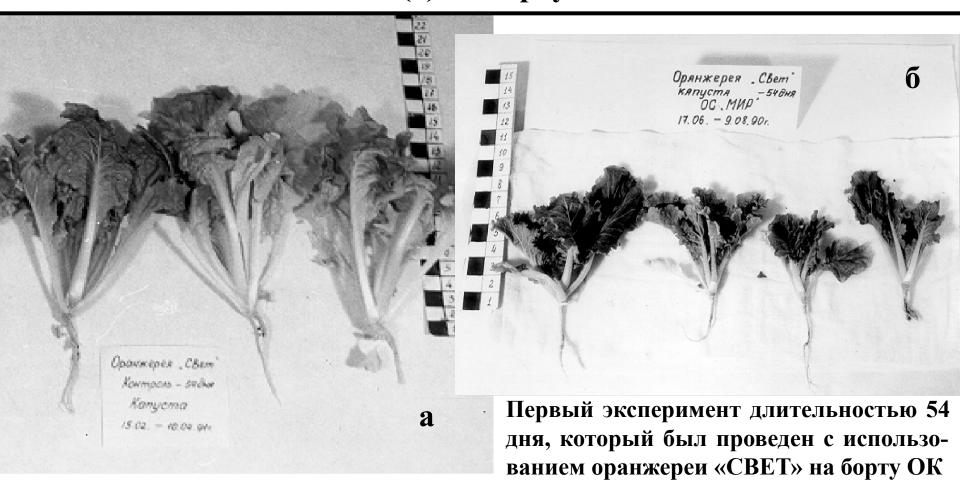
Посевная площадь - 0.1 m^2 Освещенность - $300 \text{ } \mu\text{mol/m}^2 \cdot \text{s}^{-1}$

Габариты и масса:

Блок управления (380х200х110 мм; 3.5 кг) Листовая камера (366х460х778 мм, 12 кг) Блок освещения (336х360х200 мм; 10 кг) Корневой модуль (442х360х122 мм; 12 кг)

Начало эксплуатации – 1990 г. Окончание эксплуатации – 2000 г.

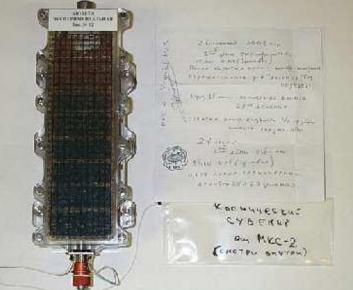
Общее непрерывное время работы – 629 суток


Перечень экспериментов с высшими растениями, проведенных на борту ОК «МИР» с использованием оранжереи «СВЕТ»

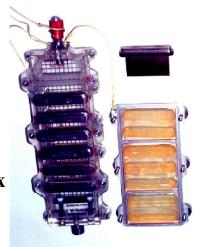
Дата	Длитель- ность, стуки	Культура	Основные цели
06.06-09.08. 1990	54	Редис и китайская капуста	Морфогенез, рост и развитие
12.08-09.11.19 95	90	Пшеница суперкарлик	Полный цикл онтогенеза
15.07.1996-17. 01.1997	150	Пшеница суперкарлик	Полный цикл онтогенеза
23.05 - 26.09.1997	130	Brassica rapa	Полный цикл онтогенеза, рост и развитие растений 2-го космического поколения
22.11.1998 – 26.02.1999	90	Пшеница Апогей	Полный цикл онтогенеза
03.03-07.07.19	90	Пшеница Апогей	Полный цикл онтогенеза 1-го и 2-го космических поколений
20.05-15.06.20 00	25	Салатные культуры	Морфогенез, рост, развитие, Тестирование вкусовых качеств салатных культур

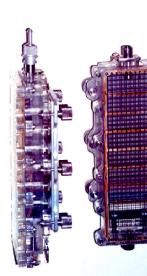
Растения пекинской капусты, выращенные в оранжерее «СВЕТ» в условиях гравитации (а) и в невесомости (б) на борту ОК «МИР»

«МИР» в 1990 году, дал противоречивые результаты. С одной стороны было показано, что морфогенез растений салата и редиса в условиях невесомости проходит нормально, с другой стороны, растения в невесомости значительно отставали в скорости роста (в 1,5 раза) и уступали в размерах растениям из наземного контроля.

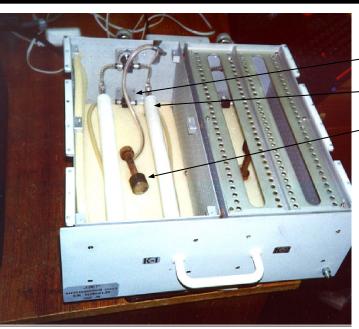


Эксперименты «МАССОПЕРЕНОС» на борту ОК «МИР» и РАСТЕНИЯ-1 на борту РС МКС (МКС-2)





Космонавты Ю.Усачев (слева) и Ю.Онуфриенко во время обучения в РГИИЦПК им. Ю.А.Гагарина


Оборудование «Экспериментальная кювета» для исследования процессов влагопереноса в капиллярно-пористых средах (субстратах)

Корневые модули (вегетационные сосуды) космических оранжерейных устройств

Воздушная магистраль


Водная магистраль

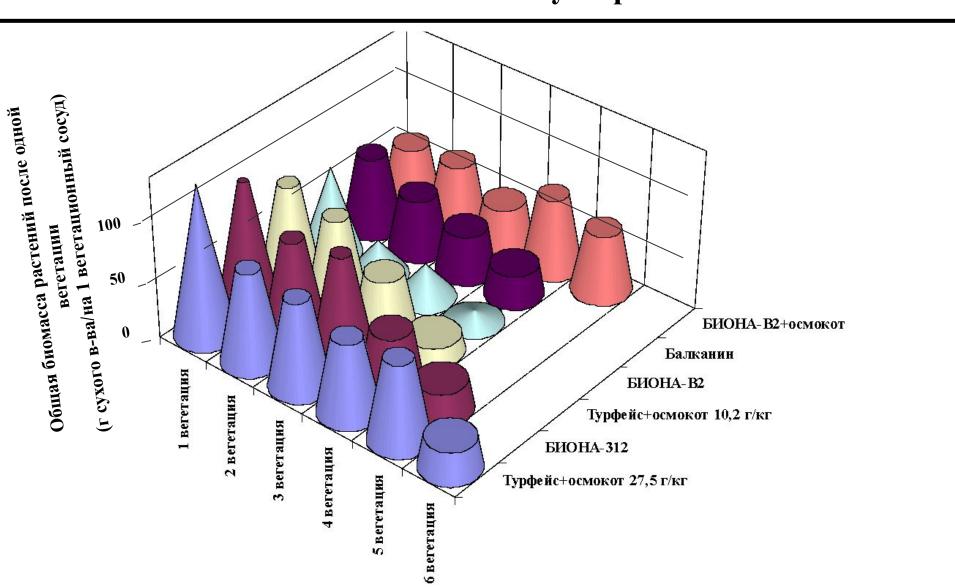
Датчики влажности,

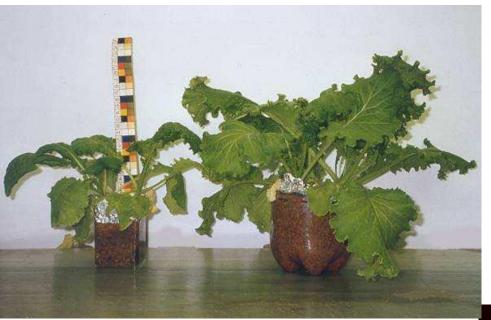
Тензиометры

КМ оранжереи «ЛАДА»

КМ оранжереи «СВЕТ»

Развитие корневой системы пшеницы суперкарлик при бессубстратном выращивании (аэропоника)

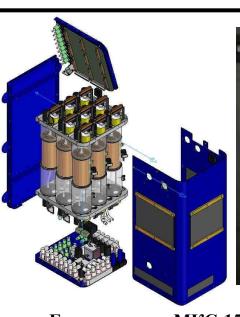

Оранжерейное устройство «ГИДРОСИСТЕМА»


имбі

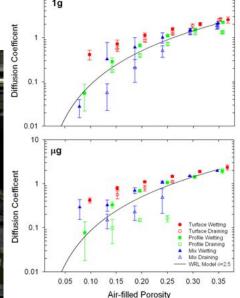
Количество вегетаций и продуктивность пекинской капусты (Brassica rapa var. pekinensis) при выращивании на бессменном субстрате

Технология культивирования высших растений на искусственных субстратах

Растения листовой горчицы, выращенные в вегетационных сосудах, с различным объемом субстрата (100 и 250 мл субстрата на растение)

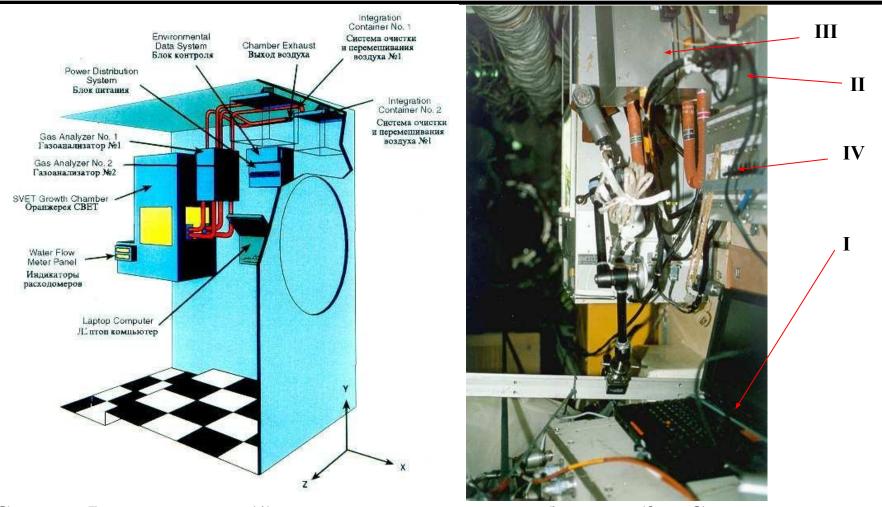

Внешний вид пекинской капусты (Brassica rapa chinesis), выращенной в условиях моделирования гипоксии на блоках КС с различным количеством каналов аэрации

Исследование диффузии О₂ в увлажненных субстратах в условиях невесомости Эксперимент РАСТЕНИЯ-1/ЛАДА-МИС (МКС-15,17)



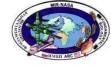
Борт-инженер МКС-15 Ю.Котов



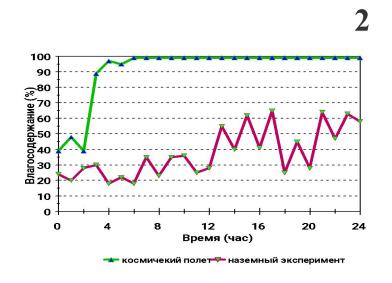


Диффузия кислорода в увлажненном субстрате Turface при 1g и в невесомости

Измерительная система оранжереи «СВЕТ», ее интеграция с оранжереей «СВЕТ» и расположение в модуле «КРИСТАЛЛ»

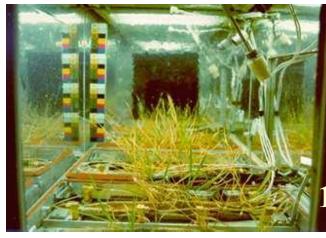


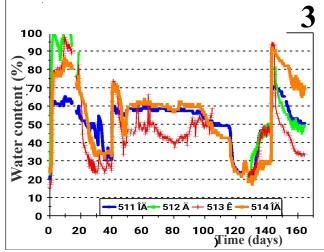
Состав: І- компьютер (1); датчики влажности субстрата (2 \times 8); расходомеры H_2O (2); II - Блок контроля (1); III - газоанализатор (2); листовые камеры (2); система фильтрации и смешивания воздуха (2); IV - блок питания (1); кабели.


Процесс влагопереноса в капиллярно-пористых средах в условиях невесомости Эксперимент «ОРАНЖЕРЕЯ-1»

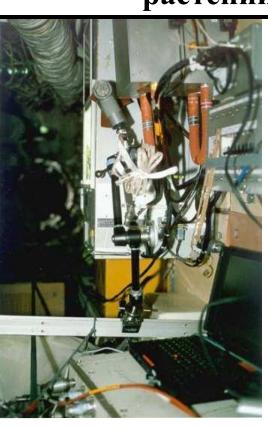
(Программа Мир-NASA)

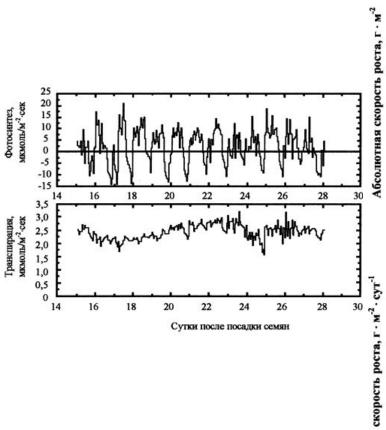
- 1 Сухой и влажный субстрат в вегетационном сосуде (ВС) оранжереи «СВЕТ»
- 2 Показания штатного датчика влажности ВС оранжереи «СВЕТ» в невесомости и на Земле.
- 3 Реальная картина изменения влажности субстрата в невесомости в ВС оранжереи «СВЕТ», полученная с помощью дополнительно установленных датчиков влажности субстрата

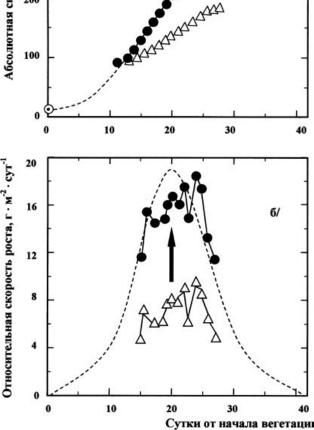




Эксперименты ОРАНЖЕРЕЯ-1, 2 с пшеницей суперкарлик на борту ОК «МИР» (Программа Мир-NASA)



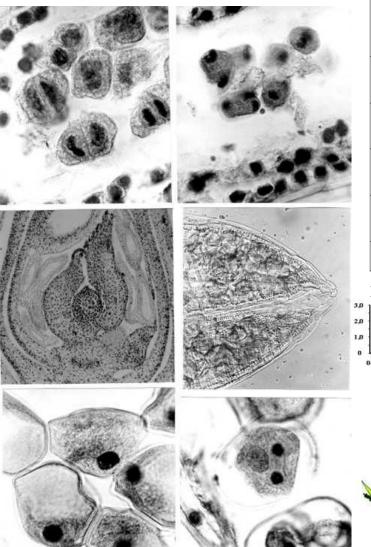

- 1. ОРАНЖЕРЕЯ-1 общий вид посева
- 2. ОРАНЖЕРЕЯ-2 пшеница суперкарлик на разных стадиях развития
- 3. ОРАНЖЕРЕЯ-2 изменения влажности субстрата по показаниям датчиков влажности

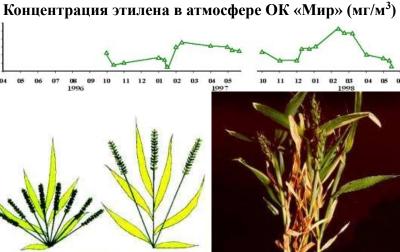


Уровень фотосинтеза и транспирации посева пшеницы суперкарлик, абсолютная (а) и относительная скорость (б) нарастания биомассы растений в эксперименте «ОРАНЖЕРЕЯ-2»

теоретические кривые;

) начальная и конечная масса сухого вещества посева растений;


Данные, полученные при непосредственном измерении; данные, с учетом коррекции.


Основные характеристики пшеницы суперкарлик выращенной в эксперименте «ОРАНЖЕРЕЯ-2»

Параметры	Наземный контроль без этилена	Полет	Контроль с этиленом $([C_2H_4]$ в атмосфере $1.1\pm0.3\ \text{мг/m}^3)$
Длительность полного цикла вегетации, сут.	90-97	90-100	90-100
Сухой вес одного растения, г	1.33±0.37	1.33	1.37±0.24
Количество стеблей на одно растение, шт.	2.8	7.6	5.4
Ширина и длина листа, см	0.8 × 10-13	1.0 × 8-10	1.0 × 8-10
Высота растения, см	10.3±2.8	4.9±1.1	8.9±2.3

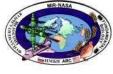
Хлорофилл а

■ Контроль без этилена

Хлорофилл б

■ Полет

Содержание углеводов, лигниноподобных в-в и пигментов в замороженных на борту ОК «МИР» растениях пшеницы суперкалик


Каротиноиды

■ Контроль с этиленом

Хлорофилл а+б

Наземный контрольный эксперимент ОРАНЖЕРЕЯ-3 (Программа Мир-NASA)

Посевы пшениц:

Слева:

Сорт Суперкарлик 0 семян на растение

В центре:

Copt Short

3 семени на растение

Справа:

Copt USU-Apogee 13 семян на растение

 $[C_2H_4] - 1.1$ $\pm 0.3 \text{ MG/M}^3$

Эксперименты по исследованию полного цикла развития пшеницы в условиях невесомости

Борт-инженер ЭО-27 Сергей Авдеев демонстрирует колосья пшеницы Апогей первого (слева) и второго (справа) «космических» поколений, выросших в оранжерее «СВЕТ» на борту ОК «МИР». Эксперимент «ОРАНЖЕРЕЯ-5», май 1999 г. Российская научная программа

Командир ЭО-26 Геннадий Падалка снимает урожай первого космического поколения пшеницы Апогей, выросшей в оранжерее «СВЕТ» на борту ОК «МИР». Эксперимент «ОРАНЖЕРЕЯ-4» Российская научная программа

имбп

Пшеница USU-Apogee, выращенная из семян, полученных в экспериментах ОРАНЖЕРЕЯ-4 и 5 на борту ОК «МИР»

Послеполетное культивирование пшеницы USU-Apogee производилось в Университете штата Юта в лаборатории проф. Брюса Багби

(ноябрь 1999 - февраль 2000)

Оранжерея «ЛАДА», предназначенная для экспериментов РАСТЕНИЯ-2 с высшими растениями, на борту РС МКС

Полная конфигурация оборудования

Сегодняшняя конфигурация оборудования на борту РС МКС (Служебный модуль)

Перечень экспериментов с высшими растениями, проведенных на борту РС МКС с использованием оранжереи «ЛАДА»

	SS-LA	BANK	5	
IN A	8	×	R	17
	5		graff.	
	WATER OF	100		

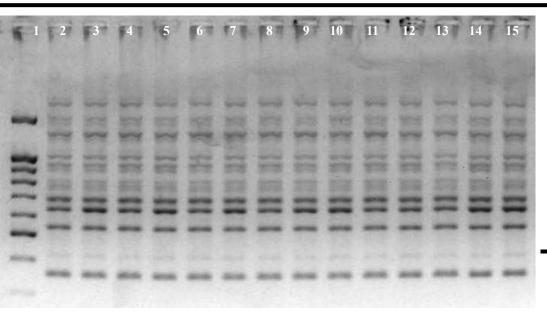
Даты	Длительн- ость, сутки	Вид растения	Основные цели эксперимента
02.10-08.11.2002	36	Мизуна	Морфогенез, рост, развитие, оценка вкусовых качеств
06.03-15.05.2003	70	Горох L-102 Горох L-131	Полный цикл онтогенеза, выбор сорта гороха
23.05-05.08.2003	73	Горох L-131	Полный цикл онтогенеза 1-го «космического» поколения
16.02-24.04.2004	76	Горох L-131	Полный цикл онтогенеза 2-го «космического» поколения
06.08-21.10.2004	76	Горох L-131	Полный цикл онтогенеза 3-го «космического» поколения
14.01-20.04.2005	75	Горох L-131	Полный цикл онтогенеза 4-го «космического» поколения
27.05-17.07.2005 24.08-05.10.2005	50 + 49	Редис	Морфогенез, рост и развитие, две вегетации
10.01-30.03.2006	76	Горох L-131	Полный цикл онтогенеза
07.07-26.09 2006	30	Ячмень	Получение биоматериала для анализа экспрессии генов
11.01-13.04.2007	78	Горох L-131	Полный цикл онтогенеза
22.01-13.04.2008	79	Горох L-131	Полный цикл онтогенеза

Эксперимент «РАСТЕНИЯ-2/ЛАДА-2» на борту РС МКС (Российская научная программа)

Л-131 -

Всхожесть семян в условиях космического полета составила 100%. Длительность цикла онтогенеза и продуктивность растений не отличались от таковых в наземных

экспериментах.



Результаты генетического анализа растений, выращенных из семян гороха линии 131 первого

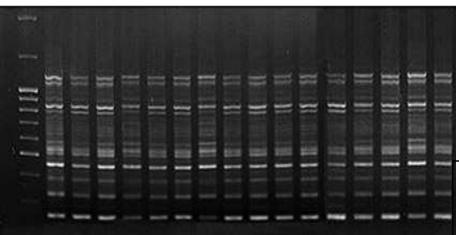
«космического» поколения

RAPD – спектры растений линии 131, полу-ченные при амплификации с праймером QR2.

- 1 маркер молекулярного веса 100bp+1,5 kB DNA Ladder,
- 2-8 контрольные растения,
- 9 15 опытные растения.

Частота хромосомных перестроек в клетках корешков гороха линии Л-131

Показатели	Опыт	Контроль
Число нормальных анафаз	529	504
Число анафаз с одним мостом	2	6
Число анафаз с двумя мостами	2	0
Число анафаз с одним фрагментом	3	1
Число анафаз с двумя фрагментами	2	2
Отставание хромосом	3	1
Прочие	0	0
% клеток с перестройками	2,2	1,9



Результаты генетического анализа растений, выращенных из семян гороха линии 131

1 - 4-го «космических» поколений

Количество клеток с хромосомными перестройками в клетках корешков гороха Л-131

RAPD – спектры растений линии 131,
полученные при амплификации с
праймером AD04 . М -маркер
молекулярного веса 100bp+1,5 kB DNA
Ladder,

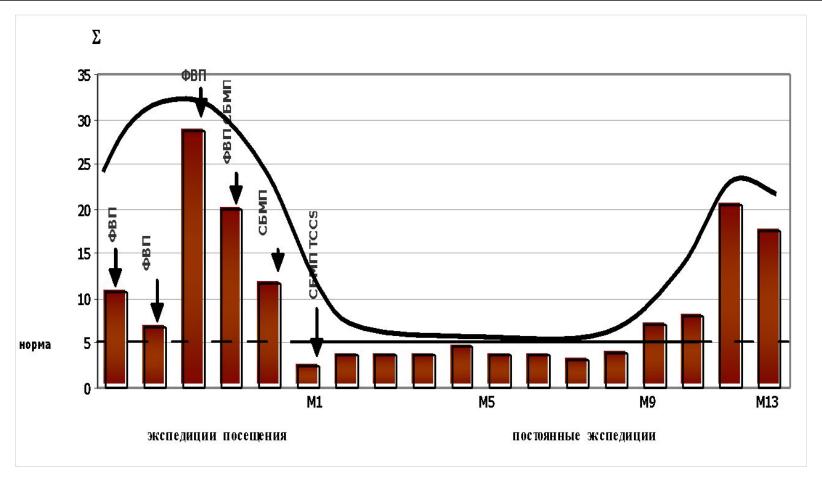
- 1-4 2-е космическое поколение
- 5-7 3-е космическое поколение
- 8-11 4-е космическое поколение
- 12-16 опытные растения.

Вариант	Число кореш- ков	Число анафаз	Анафазы с наруше- ниями	% анафаз с наруше- нием	Раз- ность
Контроль	4	187	2	0,8	
1-е космическое поколение	4	285	5	2,2	+1,4
2-е космическое поколение	4	420	0	0	-0,8
3-е космическое поколение	4	82	0	0	-0,8
4-е космическое поколение	4	87	0	0	-0,8

Члены экипажей МКС-7, 8, 9, 10,11,12,13,14,16 у оранжереи «ЛАДА» на борту РС МКС

Эксперимент РАСТЕНИЯ-2/ЛАДА-8 на этапе 12-й основной экспедиции на борту РС МКС

Бортинженер МКС-12 Валерий Токарев выполнял эксперимент по выращиванию гороха линии 131 в течение полного онтогенеза из «земных» семян.



Внешний вид растений.

На снимке видно, что прилистники растений гороха начинает закручиваться, появилась пигментация, некоторые прилистники начинают засыхать. Это может быть связано с воздействием на растения газообразных примесей в атмосфере МКС.

Динамика суммарной загрязненности воздушной среды МКС

Σ – показатель суммарной загрязненности среды

ФВП - периодическая работа фильтра вредных примесей

СБМП, TCCS – работа системы очистки российского и американского сегментов.

РНК-спектры растений ячменя, выращенных П. Виноградовым на борту РС МКС

имбп

Эксперимент РАСТЕНИЯ-2/ЛАДА-10 с растениями гороха на борту РС МКС

Бортинженер МКС-14 Михаил Тюрин выполнял эксперимент по выращиванию гороха линии 131 в течение полного онтогенеза из «земных» семян

Оранжерея Микро-ЛАДА для проведения в школах эксперимента с высшими растениями параллельно с экспериментом на борту РС МКС

Научная программа 12,13, 14 и 16-й основных экспедиций на борту МКС

educational plant growth chamber

Оранжерея «Микро-Лада» (МКС-12-17)

Schoolchildren of 10 - 15 years old from Moscow and St Petersburg (Russia), State Utah (USA), Okayama (Japan) have took part in this education program.

http://moseco.narod.ru/microlada.htmlhttp:
//moseco.narod.ru/microlada.html,
http://microlada.narod.ru/http://moseco.nar
od.ru/microlada.html,

http://microlada.narod.ru/a

http://moseco.narod.ru/microlada.html,

http://microlada.narod.ru/,

http://www.kosm-exp.narod.ru/http://moseco.narod.ru/microlada.html,

o.narod.ru/microlada.ntmi, http://microlada.narod.ru/,

http://www.kosm-exp.narod.ru/a

Мибуна

Мизуна

Рапина

Коматсуна

Репа листовая

Горчица Волнушка

Горчица белая

Салат листовой

Аругула

Горчица гигантскаякрасная

Горчица Южная курчавая

Горчица Широко-листная

369,2

333,4

723,9

284,0

536,6

370,0

416,0

424,6

465,20

415,0

300,6

340,4

26,4±8,0

33,3±10,0

51,7±10,4

 $15,8\pm4,0$

26,8±8,4

26,4±7,3

20,8±5,0

 $21,2\pm4,5$

23,3±3,4

14,8±4,6

8,4±1,6

 $17,2\pm2,1$

Спавнительные показатели пазличных пистовых

(IAMED)			iionasai	cim pasii			DIA
овощных культур							
Культура	Продук- тивность, г	Масса сырого вещества 1-го растения, г	Содержание сухого вещества, %	Высота растений, см	Количество листьев, шт.	Содержание аскорбиновой к- ты, мг %	Содержание нитратов, мг %
Капуста пекинская	413,1	25,8±2,7	8,5	22,1±2,4	12,0±1,5	124,8±9,0	64,9 ±6,8
Капуста листовая	371,3	15,5±5,8	11,9	29,3±4,1	6,5±1,2	80,0±0,9	28,0 ±0,6
Капуста листовая красная	291,6	12,2±1,8	11,2	20,0±3,0	5,0±0,5	94,9±1,0	32,2±0,5
Кай-лан	209,6	10,5±1,6	10,6	12,5±1,3	6,0±0,5	-	-
Пак-чой	404,2	20,2±6,1	9,2	18,1±1,5	10,0±2,5	60,4±1,1	53,5±0,4
Тах-цой	322,9	20,2±5,3	8,8	14,0±1,0	17,0±5,3	83,3±1,0	56,9 ±0,5

12,1

10,4

7,2

6,2

9,4

9,1

7,5

7,7

7,7

14,6

11,9

7,3

23,9±3,0

28,1±1,5

 $28,0\pm7,0$

20,7±1,0

31,1±3,7

23,1±4,8

16,8±3,3

 $17,3\pm4,0$

18,5±2,3

44,0±9,0

17,9±3,9

23,3±1,5

41,0±9,6

14,0±1,7

13,0±3,3

9,5±1,5

 $8,0\pm2,0$

 $8,0\pm1,0$

 $7,0\pm2,0$

 $7,0\pm1,5$

 $7,0\pm1,0$

8,5±2,5

7,0±1,2

11,5±1,0

133,1±1,7

137,7±1,9

44.5±1.3

 $63,0\pm1,6$

109,0±0,8

59,4±0,9

66,3±1,0

73,9±1,0

92,4±1,0

146,5±0,9

35,9±0,3

60,4±0,7

246,9±6,1

54,4±0,7

253,6±4,5

146,9±5,2

 $276,2\pm4,7$

151,8±5,3

83,9±0,9

212,3±4,3

Салатные листовые овощные растения, перспективные для выращивания в производственных космических оранжереях

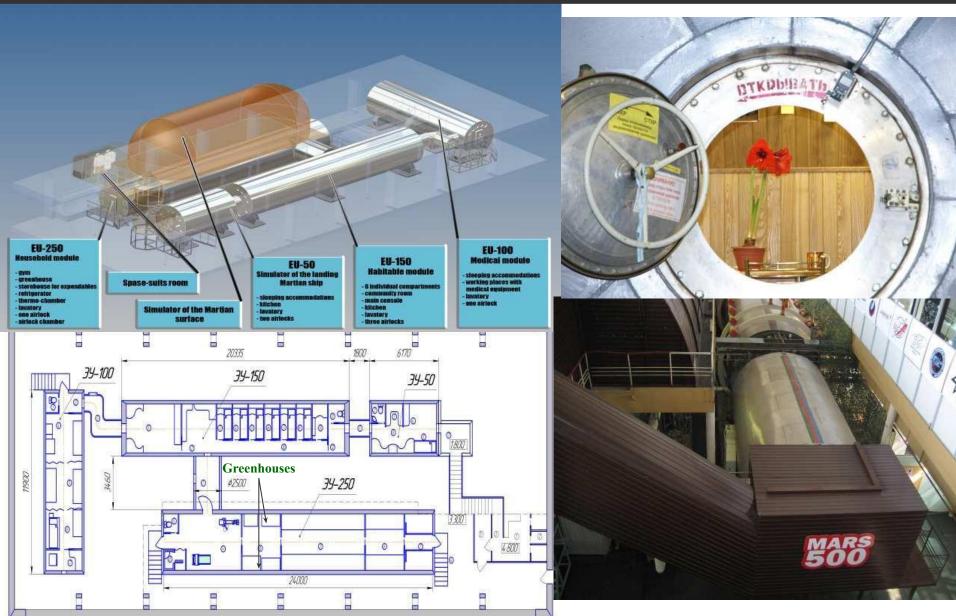
STAGES OF DEVELOPMENT IN IBMP

1967-1968 - 3 Russian men (engineers and medical doctor) spent one year in the chamber, simulating interplanetary Mission

1995 - Experiment ECO-PSY-95

1999-2000 - 12 people (11 men and 1 woman) from Russia, Japan, Germany, Austria and Canada spent from 110 to 270 days in the chamber, simulating the orbital flight of the international crew

Investigation of methodological approaches for estimation of the influence of plants on the crew members in ECO-PSY-95 and SFINCSS-99 experiments


Experiment ECO-PSY-95

Experiment SFINCSS-99

Наземный экспериментальный комплекс (НЭК)

Оранжерея для проведения биологических, технологических и психологических исследований в 105-ти и 500-суточном экспериментах

