ВЫСШИЕ ЖИРНЫЕ КИСЛОТЫ ЛИПИДЫ

Структурные признаки высших жирных кислот (ВЖК)

- ВЖК это длинноцепочечные монокарбоновые кислоты, содержащие от 12 до 24 атомов углерода;
- имеют неразветвленную цепь с четным числом атомов углерода;
- ненасыщенные ВЖК имеют цис-конфигурацию двойных связей.

Известно 65 жирных кислот, однако состав большинства природных липидов определяется 12 жирными кислотами.

липидов

Высшие жирные кислоты в составе природных

C₁₇H₃₅COOH

C₁₇H₃₃COOH

C₁₇H₃₁COOH

C₁₇H₂₉COOH

C₁₀H₃₁COOH

 $C_{19}H_{29}COOH$

 $C_{21}H_{31}COOH$

атомов

 $*\omega$ -число атомов углерода от концевой метильной группы до двойной связи (от

om

(отсчёт

16:0

16:1

18:0

18:1

18:2

18:3

20:4

20:5

22:6

-COOH

Семейство

ЖК*

 ω 9

 ω 9

 ω 6

 ω 3

ω6

 ω 3

 ω 3

после

группы),

Положение

π-связей Л**

19

Λ9

 $\Delta 9,12$

 $\Delta 9,12,15$

 $\Delta 5,8,11,14$

Δ5,8,11,14,17

 $\Delta 4,7,10,13,$

16,19

Историческое	Фортина	Mudana WV
(травиальное)	Формула	Индекс ЖК
, , , , , , , , , , , , , , , , , , ,	кислоты	
название кислоты		

 Пальмитиновая
 $C_{15}H_{31}COOH$

 Пальмитоолеиновая
 $C_{15}H_{29}COOH$

Стеариновая

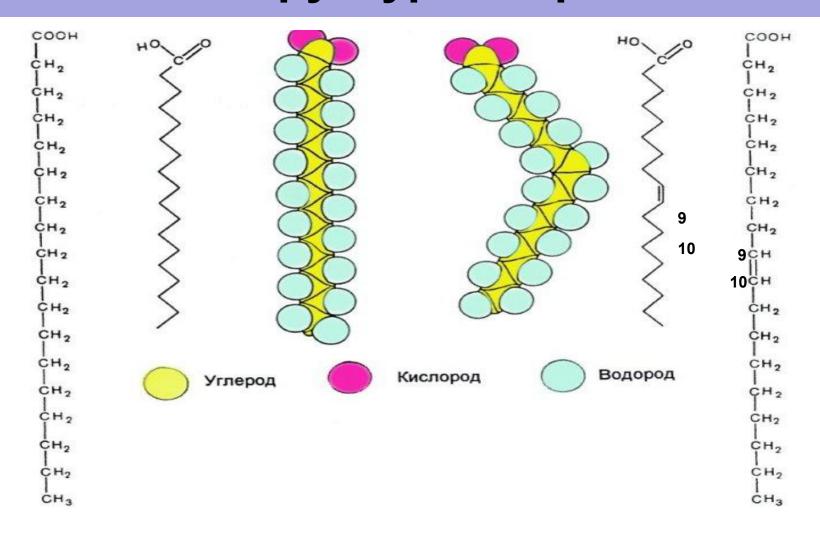
Линоленовая

⁷ Арахидоновая

8 Эйкозапентаеновая

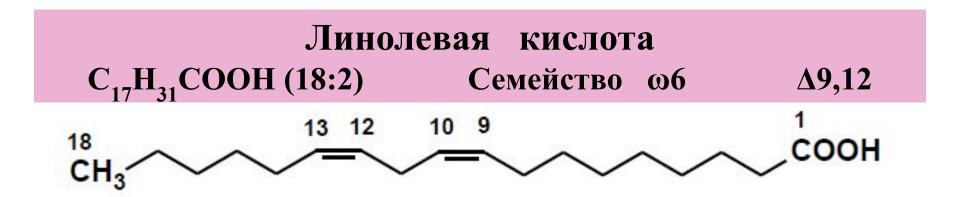
9 Докозагексаеновая

**-номера углеродных


расположены π - связи

дистального конца молекулы)

Олеиновая


5 Линолевая

Модель структуры жирных кислот

Стеариновая к-та С₁₇Н₃₅СООН (18:0) Олеиновая к-та С₁₇H₃₃COOH (18:1) ω9 Δ9

Примеры ВЖК

Линоленовая кислота C₁₇H₃₁COOH (18:3) Семейство ω3 Δ9,12,15

Происхождение ВЖК и их биологическое действие

Растительные масла и липиды наземных животных содержат кислоты:

олеиновую (18:1) ω-9, линолевую кислоты (18:2) ω-6, линоленовую (18:3) ω-3 (в незначительном кол-ве)

ненасыщенные пента- (20:5) и гексаеновые жирные кислоты (22:6), относящиеся к ряду ω-3, находятся в липидах гидробионтов, в первую очередь в морской рыбе.

Липиды

- (от греч. lípos жир) это неоднородная группа химических соединений, обладающих общими свойствами:
 - 1. низкая растворимость в воде и высокая растворимость в неполярных растворителях (эфире, хлороформе, бензоле;
 - 2. большая молекулярная масса.

Биологическая роль липидов

- Структурная функция: фосфолипиды являются основными компонентами биологических мембран (85%).
- **Трансформационная функция:** Линоленовая, арахидоновая и эйкозапентаеновая кислоты в организме человека трансформируются в эйкозаноиды (модуляторы функционирования практически всех систем организма).
- **Транспортная функция:** липиды образуют с белками структуры (липопротеины), в форме которых переносится холестерин и фракции омыляемых липидов. С липидами переносятся жирорастворимые витамины.
- Энергетическая и резервная функция: являются существенными источниками энергии (калорийность в два раза выше, чем у белков и углеводов), скапливаются в "жировом депо" человека в качестве запасного субстрата для синтеза АТФ.

Классификация липидов

Простые липиды

1. Воски

-это сложные эфиры ВЖК и высших одноатомных спиртов (н-р, цетилового спирта $C_{16}H_{33}OH$; мелиссилового спирта $C_{30}H_{63}OH$

Цетиловый эфир пальмитиновой к-ты Мелиссиловый эфир пальмитиновой к-ты

И

Воски применяются в парфюмерной промышленности

фармацевтической

2. Жиры и масла

(моно-, ди-, триацилглицерины)

- это сложные эфиры спирта глицерина и ВЖК.

1,2-О-дипальмитоил-3-О-стеароилглицерин

Жиры – это твёрдые триацилглицерины, содержащие остатки насыщенных жирных кислот.

2-О-линолеоил-3-О-линоленоил-1-О-олеоилглицерин

Масла – это жидкие триацилглицерины, содержащие остатки ненасыщенных жирных кислот.

3. Церамиды

- это N-ацилированные производные ненасыщенного длинноцепочечного двухатомного аминоспирта сфингозина

Церамиды входят в состав сложных липидов: сфингомиелинов, цереброзидов, ганглиозидов

Сложные липиды

1. Фосфолипиды

- это липиды, у которых одним из продуктов щелочного гидролиза является фосфорная кислота. Являются основными компонентами клеточных мембран.

L-глицеро-3-фосфат

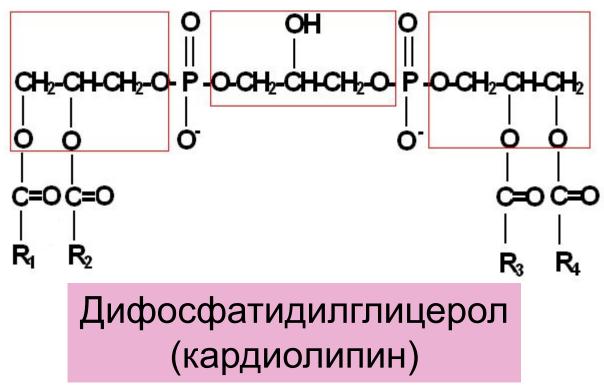
L-фосфатидовые кислоты

Природные фосфатидовые кислоты по первому положению глицериновой цепи этерифицированы насыщенной ВЖК, во втором - ненасыщенной ВЖК, а по остатку фосфорной кислоты образуют сложноэфирную связь со биогенным спиртом (серином, этаноламином, холином, инозитолом).

Природные фосфатиды

фосфатидилсерин

фосфатидилхолин


фосфатидилэтаноламин

фосфатидилинозитол

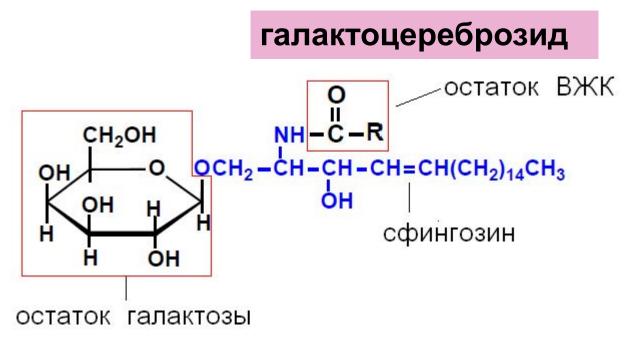
Структура кардиолипина

фосфолипида, выделяемого из сердечной мышцы

Общая формула кардиолипина

где R_1 , R_2 , R_3 , R_4 -остатки ненасыщенных жирных кислот

2. Сфинголипиды


представляют собой структурные аналоги глицерофосфолипидов, где вместо глицерина используется аминоспирт **сфингозин**

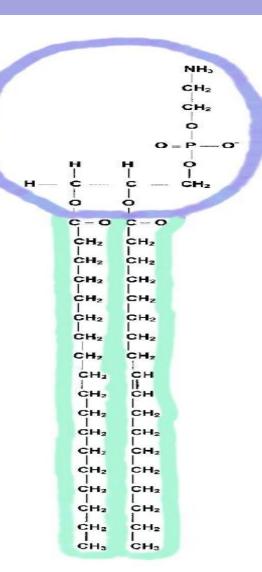
К сфинголипидам относят **сфингомиелины** (впервые обнаружены в нервной ткани)

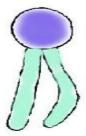
В сфингомиелинах спиртовая группа сфингозина этерифицирована остатками фосфорной кислоты и холина

3. Гликолипиды

включают углеводные остатки, чаще всего D-галактозу. Типичные представители гликолипидов — **цереброзиды и ганглиозиды. Цереброзиды** содержатся в миелиновых оболочнах нервных волокон.

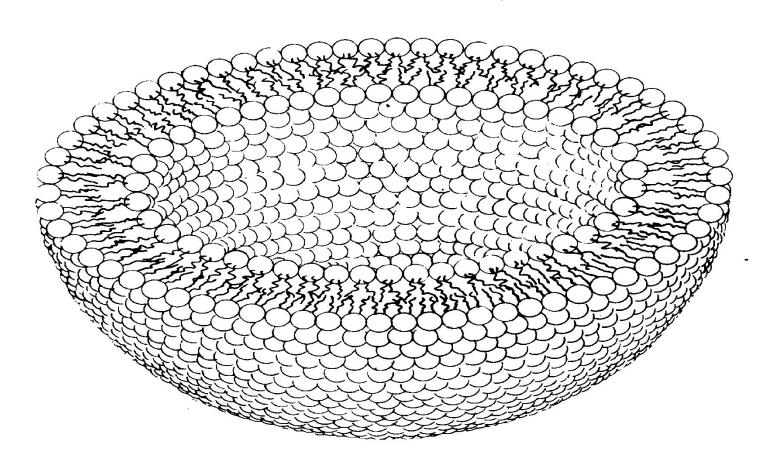
Ганглиозиды содержатся в сером веществе головного мозга. В структурном отношении они сходны с цереброзидами, вместо галактозы они содержат олигосахаридный остаток более сложной структуры.


Дифильность липидов


Характерной особенностью сложных липидов является дифильность, обусловленная присутствием в структуре молекул неполярных гидрофобных и высокополярных гидрофильных группировок (катионов и анионов):

Схематическое обозначение фосфолипидов

Гидрофильная часть (полярная головка)


Гидрофобная часть (неполярный хвост)

На поверхности раздела двух водных фаз полярные фосфолипиды самопроизвольно формируют бислои. В таких структурах углеводородные "хвосты" липидных молекул направлены внутрь от обращенных к каждой из фаз поверхностей и образуют внутренний непрерывный углеводородный слой, а располагающиеся снаружи

гидрофильные "головки" оказываются погруженными в водный слой

Химические свойства омыляемых липидов

1. ГИДРОЛИЗ

in vivo

первая стадия процесса утилизации жиров в организме, осуществляется под действием ферментов – липаз

in vitro

происходит при нагревании липидов в присутствии водных растворов кислот и щелочей (реакция омыления)

Реакции гидролиза (омыления)

$$\begin{array}{c} O \\ CH_2O \not\downarrow C-C_{15}H_{31} \\ | O \\ CHO \not\downarrow C-C_{17}H_{33} \\ | CH_2O \not\downarrow C-C_{17}H_{35} \end{array} + 3 \text{ NaOH} \longrightarrow \begin{array}{c} CH_2OH \\ CH_2OH \\ CH_2O \not\downarrow C-C_{17}H_{35} \end{array} + COONa \\ CH_2O \not\downarrow C-C_{17}H_{35} \end{array}$$

2. Реакция присоединения

Липиды содержащие остатки непредельных ЖК присоединяют по двойным связям водород, галогены, галогеноводороды и в кислой среде воду.

$$\begin{array}{c} O \\ CH_2O-C-(CH_2)_7CH=CH(CH_2)_7CH_3 \\ O \\ CHO-C-C_{17}H_{35} \\ O \\ CH_2O-C-C_{17}H_{35} \\ CH_2O-C-C_{17}H_{35} \\ CH_2O-C-C_{17}H_{35} \\ \end{array}$$

Значения йодного числа для ряда природных масел, жиров, индивидуальных жирных кислот

No	Наименование	Йодное	No	Наименование	Йодное
п/п	масла	число, % J ₂	п/п	масла	число, % J ₂
1	Подсолнечное	189,3 -	11	Жир печени	111,0
		190,6		налима	
2	Хлопковое	195,2	12	Жир печени трески	171,0
3	Льняное	189,6	13	Липиды пеляди	191,0
4	Рапсовое	179,0	14	Липиды нельмы	159,0
5	Оливковое	192,0	15	Липиды муксуна	123,0
6	Соевое	190,7	16	Свиной жир (лярд)	42,0
7	Пальмоядровое	200,0	17	Молочный жир	39,0
8	Кукурузное	195,9	18	Олеиновая кислота	89,9
9	Рисовое	180,0	19	Линолевая кислота	181,1
10	Масло зародышей	184,7	20	Линоленовая	273,7
	пшеницы			кислота	

3. Реакции восстановления (гидрирования)

В промышленности широко применяется каталитическое гидрирование ненасыщенных растительных масел, в результате чего последние превращаются в твердые жиры. Процесс протекает при 160-200°С и давлении 2-15 атм.

Маргарин - эмульсия гидрогенизованного растительного масла в молоке.

При гидрогенизации часть жирных кислот изомеризуется: из цис-формы переходит в транс-форму, не имеющей биологической значимости.

4. Реакции окисления

- Окисление кислородом воздуха ненасыщенных жирных кислот при хранении приводит к прогорканию и порче липидсодержащих продуктов, лекарств, косметических препаратов.
- Результатом свободнорадикального окисления липидов биологических мембран может быть появление пор, разрушение мембраны и гибель клетки, что может быть причиной различных патологий.

Пероксидное окисление липидов (ПОЛ)

Зарождение активных форм кислорода

```
Fe^{+2} - e \rightarrow Fe^{+3} (окисление гемоглобина) O_2^+ e \rightarrow O_2^{\bullet} (супероксидный анион-радикал, в митохондриях образуется 3x10^7 радикалов O_2^{\bullet}) O_2^{\bullet} + O_2^{\bullet} + 2H^+ \rightarrow H_2O_2 + O_2 H_2O_2^+ O_2^{\bullet} \rightarrow 2OH^{\bullet} + O_2 (гидроксильный радикал) OH^{\bullet} + O_2^{\bullet} \rightarrow O_2^{\bullet} + OH^- (синглентный кислород) OH^{\bullet} + O_2^{\bullet} \rightarrow O_2^{\bullet} + OH^- (Синглентный кислород)
```

RH остаток линоленовой кислоты фрагмент липида клеточной мембраны

Гидроксильный радикал атакует молекулу фосфолипида (RH)

RH + OH• \rightarrow R• + H₂O (реакция инициирования) алкильный радикал R• + O₂ \rightarrow RO₂• (рост цепи) пероксильный радикал RH + RO₂• \rightarrow ROOH + R• (продолжение цепи) гидроперекись RO-OH \rightarrow RO• + OH• (вырожденное разветвление цепи)

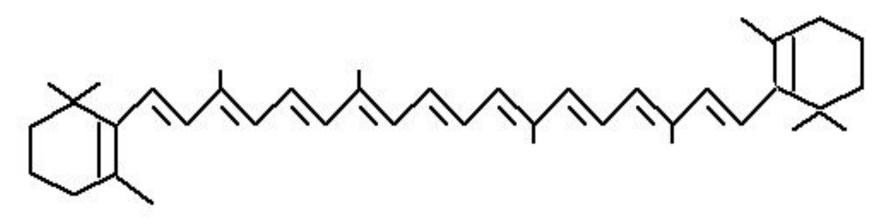
 $R^{\bullet +} R^{\bullet } \rightarrow \text{ молекулярные продукты } (обрыв цепи)$ $RO^{\bullet +} R^{\bullet } \rightarrow \text{ молекулярные продукты}$ $RO_{2}^{\bullet } + R^{\bullet } \rightarrow \text{ молекулярные продукты}$

системы защиты пероксидного окисления

1) ферментативная

$$O_2^{\bullet} + O_2^{\bullet} + 2H^+ \xrightarrow{\text{супероксиддисмутаза}} H_2O_2 + O_2$$
 $2 H_2O_2 \xrightarrow{\text{каталаза}} H_2O + O_2$

Глутатионпероксидаза вместе с глутатионом разрушают пероксид водорода и гидроперекиси, защищая клетки от повреждающего действия радикалов, образующихся при гомолитическом разрыве связей RO-OH.


2) неферментативная

Эффективными средствами защиты ПОЛ являются антиоксиданты (α-токоферол, убихинон, флавоноиды и т.д.), способные обезвреживать свободные радикалы (RO₂•, R•).

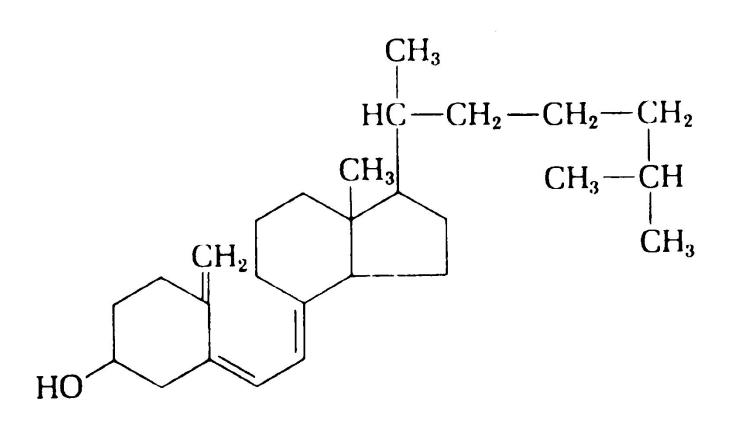
Неомыляемые (сопутствующие) вещества

- 1. Стероиды (холестерин)
- 2. Жирорастворимые витамины: A, E, D, K, убихинон Q₁₀ локализованы в биологической мембране совместно с фосфолипидами (многие из этих витаминов выполняют коферментную и антиоксидантную функцию).

Особую группу терпенов составляют **Каротиноиды** – растительные пигменты. Известно более 800 каротиноидов. α-, β- и γ-каротины являются предшественниками витаминов группы **A**.

β--каротин

Убихинон, способен К последовательному окислению (восстановлению) И выполняет переносчика роль челночного элетронтранспортной восстановительных эквивалентов цепи В митохондрий:


$$\begin{array}{c} \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{OH} \end{array} \begin{array}{c} \text{BOCCTAHOBЛЕНИЕ} \\ \text{OHUСЛЕНИЕ} \\ \text{CH}_3\text{O} \\ \text{OH} \end{array} \begin{array}{c} \text{CH}_3\text{O} \\ \text{OH} \\ \text{OH} \end{array}$$

Убихиноны (кофермент Q, n=6-10)

Восстановленные убихиноны

Токоферол (витамин E) –антистерильный фактор и основной природный антиоксидант

Витамин D₂ (холекальциферол). Активный компонент гормона, регулирующего обмен кальция и фосфора

Витамин К - кофермент, участвует в реакции карбоксилирования, является одним из факторов свертывания крови.

$$CH_3$$
 CH_3 CH_3