


# КОДИРОВАНИЕ ИНФОРМАЦИИ

## Преподаватели:

Иванова М.В. Красникова Н.А. Красиков К.С.

2021г



# Формы существования информации

- в виде текстов, рисунков, чертежей, фотографий;
- в виде световых или звуковых сигналов;
- в виде радиоволн;
- в виде электрических и нервных импульсов;
- в виде магнитных записей;
- в виде жестов и мимики;
- в виде запахов и вкусовых ощущений;
- в виде хромосом, посредством которых передаются по наследству признаки и свойства организмов и т.д.

# Подходы к измерению информации

• Подход I. Неизмеримость информации в быту

(информация как новизна)

• Подход II. Технический, или объемный

(информация как сообщения в форме знаков или сигналов, хранимые с помощью технических устройств)

• Подход III. Вероятностный

(информация как снятая неопределенность (используется в теории информации))

# Формы представления информации о погоде





Графическая

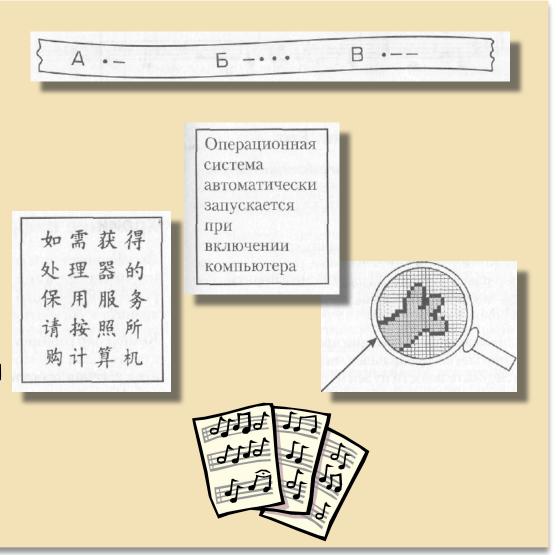
| Город  | Дата     | Облач-<br>ность                    |
|--------|----------|------------------------------------|
| Пушкин | 12.02.09 | Перемен-<br>ная<br>Облач-<br>ность |

Табличная

В городе Пушкин 12.02.09

ожидается переменная облачность

Символьная


# Формы представления информации

- 1) Знаковая письменная (состоящая из различных знаков)
  - Символьная (в виде текста, чисел, специальных символов)
  - Графическая
  - Табличная
- 2) Устная словесная
- 3) Жесты или сигналы

# Понятия кодирования информации

Представление информации с помощью какого-либо языка называют кодированием.

- Код набор символов для представления информации.
- Кодирование процесс представления информации в виде кода.





# **Выводы 1.** Измерение и кодирование информации

#### Формы существования информации:

- ■в виде текстов, рисунков, чертежей, фотографий;
- ■В виде световых или звуковых сигналов;
- •в виде радиоволн;
- ■в виде электрических и нервных импульсов;
- ■в виде магнитных записей;
- ■в виде жестов и мимики;
- ■в виде запахов и вкусовых ощущений;
- ■в виде хромосом, посредством которых передаются по наследству признаки и свойства организмов и т.д.

#### Формы представления информации

- 1. Знаковая письменная:
- •Символьная
- •Графическая
- •Табличная
- 2. Устная словесная
- 3. Жесты или сигналы

### Подходы к измерению информации:

- Неизмеримость информации в быту
- 2.Технический, или объемный
- 3.Вероятностный

Код - набор символов для представления информации. Кодирование – процесс представления информации в виде кода.

# Алфавит. Мощность алфавита

Алфавит — это конечный набор знаков (символов) любой природы, из которых конструируются сообщения на данном языке

Мощность алфавита — это полное число символов алфавита

Обозначение мощности: N

## Мощность русского алфавита N=54:

- 33 буквы
- 10 цифр
- 11 знаковпрепинания
- скобки
- пробел

# Двоичный алфавит

Самое наименьшее число символов в алфавите: 2 (о и 1)- двоичный алфавит

- Информационный вес символа двоичного алфавита принят за единицу информации и называется **1 БИТ**
- Более крупная единица 1 БАЙТ = 8 БИТ
- Именно восемь битов требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера

## Соотношение единиц

- 1 Килобайт (Кбайт) = 1024 байт = 2<sup>10</sup> байт,
- 1 Мегабайт (Мбайт) = 1024 Кбайт = 2<sup>20</sup> байт,
- 1 Гигабайт (Гбайт) = 1024 Мбайт = 2<sup>30</sup> байт.
- 1 Терабайт (Тбайт) = 1024 Гбайт = 2<sup>40</sup> байт,
- 1 Петабайт (Пбайт) = 1024 Тбайт = 2<sup>50</sup> байт

## Задача

Сколько битов и байтов в следующей фразе?

Идет дождь.

<u>Ответ:</u> **11 байт, 88 бит** 

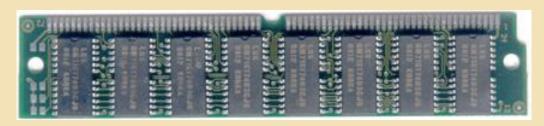
## Байты и килобайты

## **ИНФОРМАТИКА**

11 байтов



Примерно 400 Кбайт


## Мегабайты

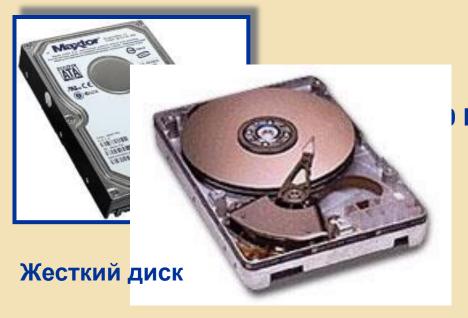
## Оперативная память

## Дискета



1,38 МБ




256 МБ, 512 МБ, 1024 МБ, ...

## Лазерный диск



700 МБ

## Гигабайты



ГБ, 200 ГБ, ...

Flash-память



## Скорость информационного обмена

Количество информации, передаваемое за единицу времени, называется <u>скоростью передачи информации или</u> <u>скоростью информационного потока</u>

Обозначается:  $\upsilon$ 

Выражается в единицах:

- ∘ бит в секунду (бит/с)
- ∘ байт в секунду (байт/с)
- ∘ Кбайт в секунду (Кбайт/с) и т.д.

# Таблица кодировки

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера (коды), называется <u>таблицей кодировки</u>

Для разных типов ЭВМ используются различные кодировки. С распространением IВМ РС международным стандартом стала таблица кодировки ASCII (American Standart Code for Information Interchange) - Американский стандартный код для информационного обмена

| сшивол | 10-<br>ti<br>10- | 2-й ход  | символ | 10-<br>ti<br>x00 | 2-ti xoò | сшивал | 10-11<br>10-0 | 2-li xoò | синвол | 10-1 <u>1</u><br>10-2 <u>1</u> | 2-li xoò  |
|--------|------------------|----------|--------|------------------|----------|--------|---------------|----------|--------|--------------------------------|-----------|
|        | 32               | 00100000 | 8      | 56               | 00111000 | P      | 80            | 01010000 | h      | 104                            | 01101000  |
| !      | 33               | 00100001 | 9      | 57               | 00111001 | Q      | 81            | 01010001 | i      | 105                            | 01101001  |
|        | 34               | 00100010 |        | 58               | 00111010 | R      | 82            | 01010010 | j      | 106                            | 01101010  |
| #      | 35               | 00100011 | ;      | 59               | 00111011 | S      | 83            | 01010011 | k      | 107                            | 01101011  |
| \$     | 36               | 00100100 | <      | 60               | 00111100 | T      | 84            | 01010100 | 1      | 108                            | 01101100  |
| %      | 37               | 00100101 |        | 61               | 00111101 | U      | 85            | 01010101 | m      | 109                            | 01101101  |
| æ      | 38               | 00100110 | ۸      | 62               | 00111110 | V      | 86            | 01010110 | n      | 110                            | 01101110  |
| •      | 39               | 00100111 | ?      | 63               | 00111111 | W      | 87            | 01010111 | 0      | 111                            | 01101111  |
| (      | 40               | 00101000 | @      | 64               | 01000000 | X      | 88            | 01011000 | P      | 112                            | 01110000  |
| )      | 41               | 00101001 | A      | 65               | 01000001 | Y      | 89            | 01011001 | q      | 113                            | 01110001  |
| *      | 42               | 00101010 | В      | 66               | 01000010 | Z      | 90            | 01011010 | r      | 114                            | 01110010  |
| +      | 43               | 00101011 | С      | 67               | 01000011 | [      | 91            | 01011011 | s      | 115                            | 01110011  |
| ,      | 44               | 00101100 | D      | 68               | 01000100 | 1      | 92            | 01011100 | t      | 116                            | 01110100  |
|        | 45               | 00101101 | E      | 69               | 01000101 | 1      | 93            | 01011101 | u      | 117                            | 01110101  |
|        | 46               | 00101110 | F      | 70               | 01000110 | ^      | 94            | 01011110 | v      | 118                            | 01110110  |
| - /    | 47               | 00101111 | G      | 71               | 01000111 | 10203  | 95            | 01011111 | w      | 119                            | 01110111  |
| 0      | 48               | 00110000 | Н      | 72               | 01001000 |        | 96            | 01100000 | x      | 120                            | 01111000  |
| 1      | 49               | 00110001 | I      | 73               | 01001001 | a      | 97            | 01100001 | у      | 121                            | 01111001  |
| 2      | 50               | 00110010 | J      | 74               | 01001010 | b      | 98            | 01100010 | Z      | 122                            | 01111010  |
| 3      | 51               | 00110011 | K      | 75               | 01001011 | С      | 99            | 01100011 | {      | 123                            | 01111011  |
| 4      | 52               | 00110100 | L      | 76               | 01001100 | d      | 100           | 01100100 |        | 124                            | 011111100 |
| 5      | 53               | 00110101 | M      | 77               | 01001101 | е      | 101           | 01100101 | }      | 125                            | 01111101  |
| 6      | 54               | 00110110 | N      | 78               | 01001110 | f      | 102           | 01100110 | 1      | 126                            | 01111110  |
| 7      | 55               | 00110111 | 0      | 79               | 01001111 | g      | 103           | 01100111 |        | 127                            | 01111111  |

# Стандартная кодировка ASCII

| сшивал | 10-15<br>10-05 | 2-й ход  | сшивал     | 10-11<br>10-00 | 2-ti x0ò  | символ | 10-15<br>10-25 | 2-li x0ò | сшивол | 10-11<br>10-00 | 2-li x0ð  |
|--------|----------------|----------|------------|----------------|-----------|--------|----------------|----------|--------|----------------|-----------|
| ъ      | 128            | 10000000 |            | 160            | 10100000  | A      | 192            | 11000000 | a      | 224            | 11100000  |
| ŕ      | 129            | 10000001 | ÿ          | 161            | 10100001  | Б      | 193            | 11000001 | б      | 225            | 11100001  |
| ,      | 130            | 10000010 | Ĭ.         | 162            | 10100010  | В      | 194            | 11000010 | В      | 226            | 11100010  |
| ŕ      | 131            | 10000011 | Ĵ          | 163            | 10100011  | Г      | 195            | 11000011 | Г      | 227            | 11100011  |
| ,,     | 132            | 10000100 | O          | 164            | 10100100  | Д      | 196            | 11000100 | д      | 228            | 11100100  |
| ***    | 133            | 10000101 | Ľ          | 165            | 10100101  | E      | 197            | 11000101 | e      | 229            | 11100101  |
| +      | 134            | 10000110 | - 1        | 166            | 10100110  | Ж      | 198            | 11000110 | Ж      | 230            | 11100110  |
| #      | 135            | 10000111 | S          | 167            | 10100111  | 3      | 199            | 11000111 | 3      | 231            | 11100111  |
| €      | 136            | 10001000 | Ě          | 168            | 10101000  | И      | 200            | 11001000 | и      | 232            | 11101000  |
| %。     | 137            | 10001001 | ©          | 169            | 10101001  | Й      | 201            | 11001001 | й      | 233            | 11101001  |
| љ      | 138            | 10001010 | $\epsilon$ | 170            | 10101010  | К      | 202            | 11001010 | К      | 234            | 11101010  |
| <      | 139            | 10001011 | «          | 171            | 10101011  | Л      | 203            | 11001011 | Л      | 235            | 11101011  |
| њ      | 140            | 10001100 | .0075      | 172            | 10101100  | M      | 204            | 11001100 | M      | 236            | 11101100  |
| Ŕ      | 141            | 10001101 | 2          | 173            | 10101101  | Н      | 205            | 11001101 | н      | 237            | 11101101  |
| Ћ      | 142            | 10001110 | ®          | 174            | 10101110  | 0      | 206            | 11001110 | 0      | 238            | 11101110  |
| Ų      | 143            | 10001111 | Ϊ          | 175            | 10101111  | П      | 207            | 11001111 | п      | 239            | 11101111  |
| ħ      | 144            | 10010000 | 0          | 176            | 10110000  | P      | 208            | 11010000 | p      | 240            | 11110000  |
| 6      | 145            | 10010001 | ±          | 177            | 10110001  | С      | 209            | 11010001 | С      | 241            | 11110001  |
| ,      | 146            | 10010010 | I          | 178            | 10110010  | T      | 210            | 11010010 | T      | 242            | 11110010  |
| **     | 147            | 10010011 | i          | 179            | 10110011  | У      | 211            | 11010011 | у      | 243            | 11110011  |
| **     | 148            | 10010100 | r          | 180            | 10110100  | Ф      | 212            | 11010100 | ф      | 244            | 11110100  |
| •      | 149            | 10010101 | μ          | 181            | 10110101  | X      | 213            | 11010101 | X      | 245            | 11110101  |
|        | 150            | 10010110 | <b>¶</b>   | 182            | 10110110  | Ц      | 214            | 11010110 | ц      | 246            | 11110110  |
| 200    | 151            | 10010111 |            | 183            | 10110111  | Ч      | 215            | 11010111 | ч      | 247            | 11110111  |
|        | 152            | 10011000 | ë          | 184            | 10111000  | Ш      | 216            | 11011000 | ш      | 248            | 111111000 |
| TM     | 153            | 10011001 | No         | 185            | 10111001  | Щ      | 217            | 11011001 | щ      | 249            | 111111001 |
| љ      | 154            | 10011010 | E          | 186            | 10111010  | ъ      | 218            | 11011010 | ъ      | 250            | 111111010 |
| >      | 155            | 10011011 | >>         | 187            | 10111011  | ы      | 219            | 11011011 | ы      | 251            | 11111011  |
| њ      | 156            | 10011100 | j          | 188            | 101111100 | Ь      | 220            | 11011100 | ь      | 252            | 111111100 |
| Ŕ      | 157            | 10011101 | S          | 189            | 10111101  | Э      | 221            | 11011101 | 3      | 253            | 11111101  |
| ħ      | 158            | 10011110 | S          | 190            | 10111110  | Ю      | 222            | 11011110 | ю      | 254            | 11111110  |
| Ų      | 159            | 10011111 | ï          | 191            | 10111111  | Я      | 223            | 11011111 | я      | 255            | 11111111  |

# Таблица расширенного кода *ASC*II



# Выводы 2. Единицы измерения информации

**Алфавит** – это конечный набор знаков любой природы, из которых конструируются сообщения на данном языке Мощность алфавита (N)- число символов алфавита Мощность русского алфавита N = 54:

- •33 буквы
- **•**10 цифр
- ■11 знаков препинания
- •скобки
- •пробел

#### Скорость информационного обмена (U)-

количество информации, передаваемое за единицу времени Единицы измерения:

> бит в секунду (бит/с) байт в секунду (байт/с) Кбайт в секунду (Кбайт/с) и т.д.

## **ASCII-** Американский стандартный код для информационного обмена-

таблица кодировки, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера (коды).

#### Двоичный алфавит: N=2 (о и 1)

1 БИТ – единица измерения информации Более крупная единица 1 БАЙТ = 8 БИТ Именно восемь битов требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера

### Другие единицы измерению информации:

 Килобайт (Кбайт) = **1024** байт = **210** байт, 1 Мегабайт (Мбайт) = 1024 Кбайт = 220 байт, Гигабайт (Гбайт) = **1**024 Мбайт = **2**30 байт. Терабайт (Тбайт) = **1**024 Гбайт = **2**40 байт, Петабайт (Пбайт) = **1**024 Тбайт = **2**50 байт

## Позиционные и непозиционные системы счисления

Числа записываются с использованием особых знаковых систем, которые называют системами счисления.

#### Система счисления -

совокупность приемов и правил записи чисел с помощью определенного набора символов

## Системы счисления



Вес каждой цифры изменяется в зависимости от ее позиции в последовательности цифр, изображающих число:

0,7 7 70

#### **НЕПОЗИЦИОННЫЕ**

Количественное значение цифры числа не зависит от того, в каком месте (позиции или разряде) записана та или иная цифра:

XIX

## Римская непозиционная система счисления

Самой распространенной из непозиционных систем счисления является римская. В качестве цифр используются:

I(1), V(5), X(10), L(50), C(100), D(500), M(1000).

Величина числа определяется как сумма или разность цифр в числе.

MCMXCVIII = 1000+(1000-100)+(100-10)+5+1+1+1 = 1998

## Позиционные системы счисления

Первая позиционная система счисления была придумана еще в Древнем Вавилоне, нумерация была **шестидесятеричная**, т.е. в ней использовалось шестьдесят цифр!

В XIX веке довольно широкое распространение получила **двенадцатеричная** система счисления.

В настоящее время наиболее распространены десятичная, двоичная, восьмеричная и шестнадцатеричная системы счисления.

## Основание системы счисления

Количество различных символов, используемых для изображения числа в позиционных системах счисления, называется <u>основанием системы счисления</u>.

| Система счисления | Основан | Алфавит цифр                                   |
|-------------------|---------|------------------------------------------------|
|                   | ие      |                                                |
| Десятичная        | 10      | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9                   |
| Двоичная          | 2       | 0, 1                                           |
| Восьмеричная      | 8       | 0, 1, 2, 3, 4, 5, 6, 7                         |
| Шестнадцатеричная | 16      | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F |

# Наиболее употребимые системы счисления

| 10 - я | 2 - я | 8 - я | 16 - я |
|--------|-------|-------|--------|
| 0      | 0     | 0     | 0      |
| 1      | 1     | 1     | 1      |
| 2      | 10    | 2     | 2      |
| 3      | 11    | 3     | 3      |
| 4      | 100   | 4     | 4      |
| 5      | 101   | 5     | 5      |
| 6      | 110   | 6     | 6      |
| 7      | 111   | 7     | 7      |
| 8      | 1000  | 10    | 8      |
| 9      | 1001  | 11    | 9      |

| 10 - я | 2 - я | 8 - я | 16 - я |
|--------|-------|-------|--------|
| 10     | 1010  | 12    | А      |
| 11     | 1011  | 13    | В      |
| 12     | 1100  | 14    | С      |
| 13     | 1101  | 15    | D      |
| 14     | 1110  | 16    | E      |
| 15     | 1111  | 17    | F      |
| 16     | 10000 | 20    | 10     |
| 17     | 10001 | 21    | 11     |
| 18     | 10010 | 22    | 12     |
| 19     | 10011 | 23    | 13     |

# Почему компьютеры используют двоичную систему?

- для ее реализации нужны технические устройства с двумя устойчивыми состояниями;
- представление информации посредством только двух состояний **надежно** и **помехоустойчиво**;
- возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;
- двоичная арифметика намного проще десятичной.
- Недостаток двоичной системы **быстрый рост числа разрядов**, необходимых для записи чисел.



**Система счисления** — совокупность приемов и правил записи чисел с помощью определенного набора символов

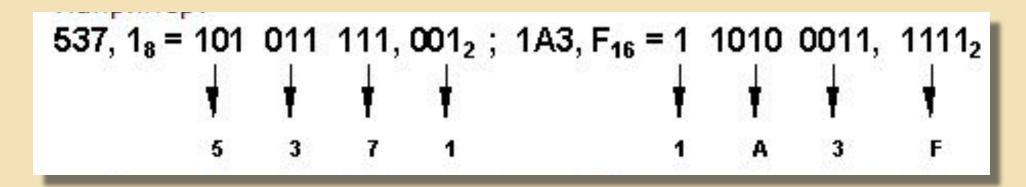
#### Основание системы счисления -

количество различных символов, используемых для изображения числа в позиционных системах счисления.

#### Системы счисления:

- 1.Не позиционные (римская)
- 2.Позиционные:
- ■десятичная (основание -10)
- ■двоичная (основание -2)
- ■восьмиричная (основание -8)
- **■**16-ричная (основание 16)

#### Почему компьютеры используют двоичную систему счисления:


- І.для ее реализации нужны технические устройства с двумя устойчивыми состояниями;
- 2. представление информации посредством двух состояний надежно и помехоустойчиво;
- 3.возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;
  - 4. двоичная арифметика намного проще десятичной.

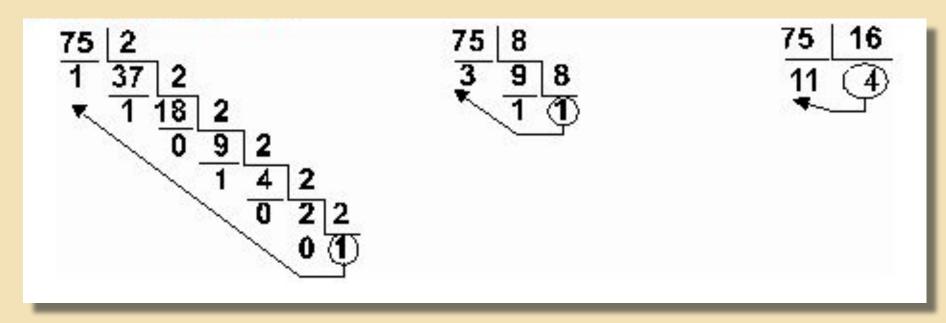
Недостаток двоичной системы - быстрый рост числа разрядов, необходимых для записи чисел.

# Применение восьмеричной и 16-ричной систем

Для профессионального использования компьютера следует научиться понимать **«машинное слово».** Для этого и разработаны 8-ричная и 16-ричная системы. Представление в компьютере этих чисел требует меньше разрядов, чем двоичные.

Перевод 8-ричных и 16-ричных чисел в двоичные прост:




# Применение восьмеричной и 16-ричной систем

Перевод двоичных чисел в 8-ричные и 16-ричные тоже прост:

# Перевод чисел из десятичной системы счисления в другие позиционные системы

При переводе десятичного числа в систему с основанием q его надо делить на q до получения остатка.

ПРИМЕР: перевести число 75 из десятичной системы в другие.



**OTBET:** 
$$75_{10} = 1001011_2 = 113_8 = 4B_{16}$$

## Самостоятельно

$$26_{10} \rightarrow X_2$$
  $26_{10} \rightarrow X_3$   $26_{10} \rightarrow X_{16}$   $q = 10, p = 3$   $q = 10, p = 16$ 

# РЕШАЕМ

# Перевод чисел в десятичную систему

 Основан на представлении любого числа в виде многочлена

• Например, число 757,7 означает сокращенную запись выражения:

•  $700 + 50 + 7 + 0.7 = 7*10^2 + 5.10^1 + 7.10^0 + 7.10^{-1} = 757.7$ .

# Перевод чисел в десятичную систему

При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления

```
Разряды 3 2 1 0 -1 

Число 1 0 1 1, 1_2 = 1*2^3 + 1*2^1 + 1*2^0 + 1*2^4 = 11, 5_{10}. 

Разряды 2 1 0 -1 

Число 2 7 6, 5_3 = 2*8^2 + 7*8^1 + 6*8^0 + 5*8^4 = 190,625_{10}. 

Разряды 2 1 0 

Число 1 F 3_{16} = 1*16^2 + 15*16^1 + 3*16^0 = 499_{10}.
```

## Самостоятельно

Перевести число из двоичной системы в десятичную:

10100110=

РЕШАЕМ

## Машинное представление целых чисел в компьютере



Машинное слово – 16 разрядов.

Машинное словоструктурная единица информации ЭВМ

#### Примеры:

а) число 72<sub>10</sub> = 1001000<sub>2</sub> в **однобайтовом** формате:

Номера разрядов Биты числа 7 6 5 4 3 2 1 0

б) это же число в двубайтовом формате:

Номера разрядов Биты числа 

# Арифметические основы работы ЭВМ

| Сложение   | Вычитание  | Умножение        |
|------------|------------|------------------|
| 0 + 0 = 0  | 0 - 0 = 0  | $0 \times 0 = 0$ |
| 0 + 1 = 1  | 1-0=1      | 0 × 1 = 0        |
| 1 + 0 = 1  | 1-1=0      | $1 \times 0 = 0$ |
| 1 + 1 = 10 | 10 - 1 = 1 | 1 × 1 = 1        |

К началу выполнения арифметического действия операнды операции помещаются в соответствующие регистры АЛУ.



# Выводы 4. Перевод чисел

#### Переводы чисел из одной системы в другие:

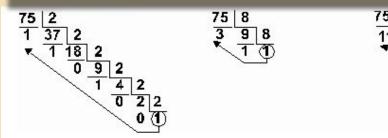


#### 8-ричная и 16-ричная системы

разработаны для возможности представления этих чисел в памяти компьютере вместо двоичных, т.к. требуют меньше разрядов памяти.

#### Машинное представление целых чисел

Машинное слово-структурная единица информации Машинное слово – 16 разрядов.


## Представление чисел с фиксированной точкой целая часть дробная част знак положение точки

```
537, 1<sub>8</sub> = 101 011 111, 001<sub>2</sub>; 1A3, F<sub>16</sub> = 1 1010 0011, 1111<sub>2</sub>
10101001,10111, = 10 101 001, 101 110, = 251,56,
10101001,10111<sub>2</sub> = 1010 1001, 1011 1000<sub>2</sub> = A9,B8<sub>16</sub>
```

Разряды 3 2 1 0 -1   
Число 1 0 1 1, 
$$1_2 = 1*2^3 + 1*2^1 + 1*2^0 + 1*2^1 = 11,5_{10}$$
.

Разряды 2 1 0 -1   
Число 2 7 6, 
$$5_a = 2*8^2 + 7*8^4 + 6*8^6 + 5*8^4 = 190,625_{10}$$
.

Число 1 F 
$$3_{16} = 1*16^2 + 15*16^1 + 3*16^0 = 499_{10}$$
.

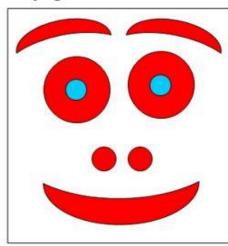


# Кодирование графической информации

Работа с графикой на компьютере требует решения следующих проблем:

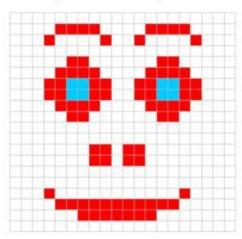
- Как закодировать информацию графического вида в двоичном коде?
- Как передать средствами компьютера цвет в изображении?
- Какие средства позволяют передать объёмность изображения на плоском экране?
- Как обеспечить эффект движения при создании анимационных роликов?

# Кодирование графической информации


Создавать и хранить графические объекты в компьютере можно двумя способами - как растровое или как векторное изображение. Для каждого типа изображений используется свой способ кодирования



# Кодирование графической информации


В векторной графике - объекты.

Объект = контур и внутренняя область.



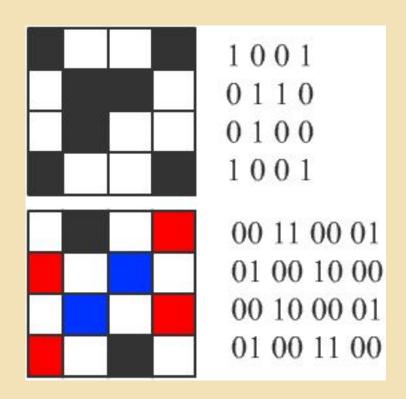
Изображение – состоит из совокупности объектов

В растровой графике – матрица (растр) раскрашенных точек (пикселей)

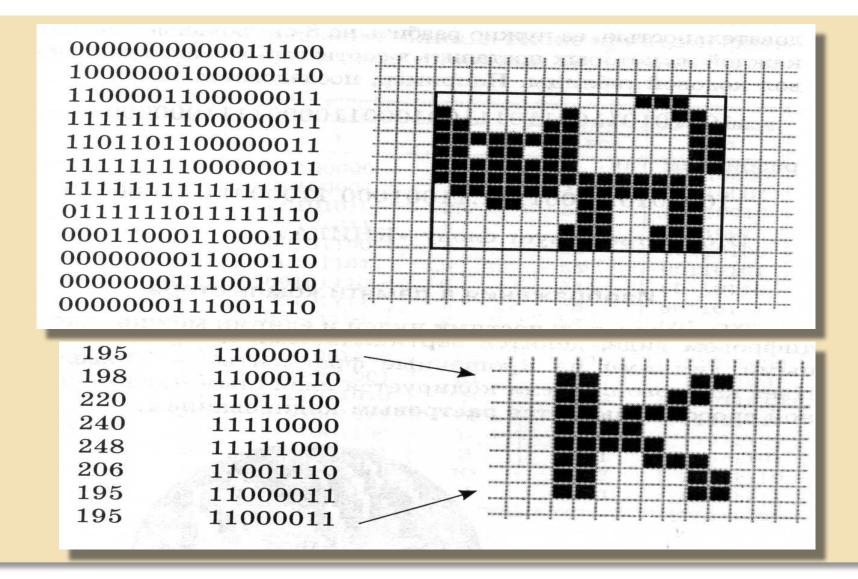


Изображение состоит из упорядоченной совокупности точек

# Кодирование растровых изображений


Для черно-белого изображения информационный объем одной точки равен одному биту (либо черная, либо белая - либо 1, либо 0).

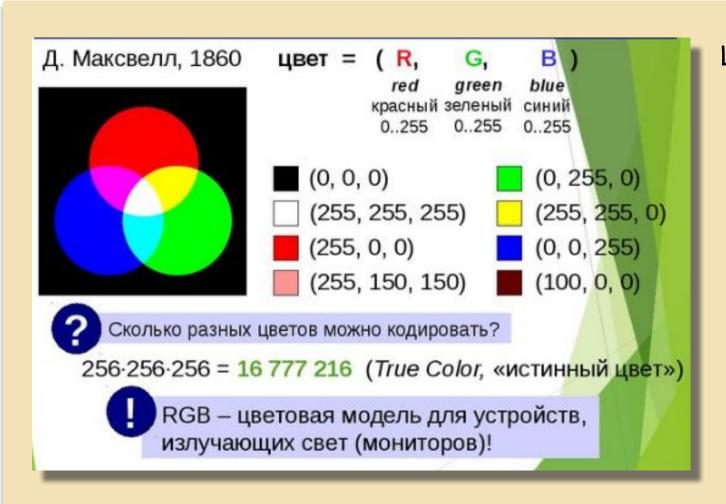
Для четырех цветного - 2 бита.


Для 8 цветов - 3 бита.

Для 16 цветов - 4 бита.

Для 256 цветов - 8 бит (1 байт).




### Представление в памяти ПК черно- белой графики



# Кодирование цветовой информации

- Человеческий глаз не самый совершенный инструмент, но и он может различать десятки миллионов цветовых оттенков.
- Если для кодирования цвета одной точки использовать два байта, то можно закодировать 256×256 = 65536 различных цветов.
- Если 3 байта (24 бита), то количество возможных цветов увеличится еще в 256 раз и достигнет 16,5 миллионов
- 4 байта (32 бита)- 4 294 967 296 цветов (True Color)

#### Цветовая модель RGB



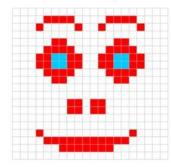
Цветное изображение на экране монитора формируется за счет смешивания трех базовых цветов: красного, зеленого,

синего: модель RGB.

Для получения богатой палитры базовым цветам могут быть заданы различные интенсивности.

# 🗹 Выводы 5. Кодирование графической информации

Создавать и хранить графические объекты в компьютере можно двумя способами - как растровое или как векторное изображение. Для каждого типа изображений используется свой способ кодирования


> В векторной графике объекты.

Объект = контур и внутренняя область.



Изображение - состоит из совокупности объектов

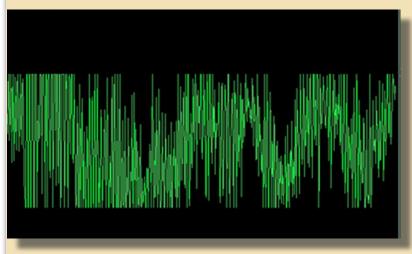
В растровой графике – матрица (растр) раскрашенных точек (пикселей)



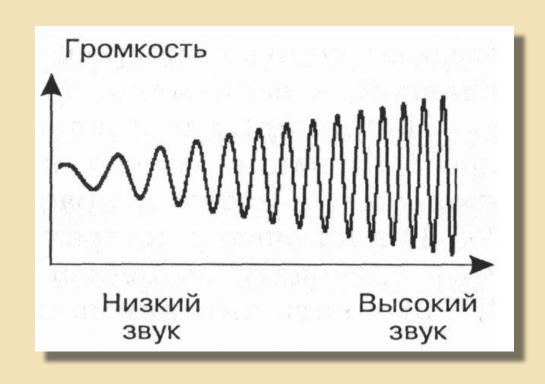
Изображение состоит из упорядоченной совокупности. точек

Для черно-белого изображения информационный объем одной точки равен одному биту (либо черная, либо белая - либо 1, либо 0). Для четырех цветного - 2 бита. Для 8 цветов - 3 бита.

Для 16 цветов - 4 бита. Для 256 цветов - 8 бит (1 байт).


Цветное изображение на экране монитора формируется за счет

смешивания трех базовых цветов: красного, зеленого,


синего: модель RGB.

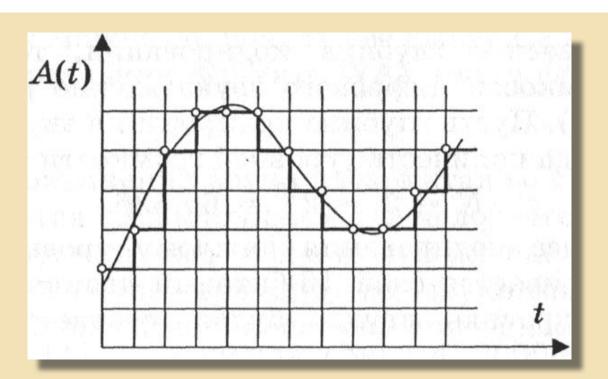
Для получения богатой палитры базовым цветам могут быть заданы различные интенсивности.





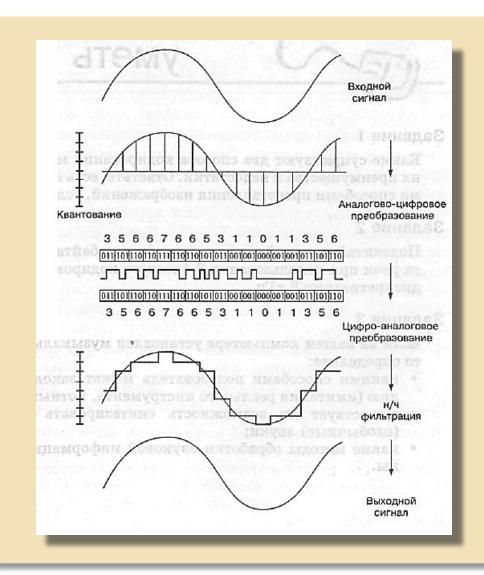
- Звук это колебания воздуха
- Звук- непрерывный сигнал
- Звук это волна с непрерывно меняющейся амплитудой и частотой




Чем больше амплитуда, тем громче звук

Чем больше частота, тем больше тон

Человеческое ухо воспринимает звук с частотой от 20 колебаний в секунду (низкий звук) до 20 000 колебаний в секунду (высокий звук).


| Звук                                             | Громкость в<br>децибелах |
|--------------------------------------------------|--------------------------|
| Нижний предел чувствительности человеческого уха | 0                        |
| Шорох листьев                                    | 10                       |
| Разговор                                         | 60                       |
| Гудок автомобиля                                 | 90                       |
| Реактивный двигатель                             | 120                      |
| Болевой порог                                    | 140                      |

Для измерения громкости звука применяется специальная единица - **децибел** 





Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации



- Схема дискретизации непрерывного сигнала
- Устройство, выполняющее процесс дискретизации и оцифровки аналоговых сигналов, называется аналого-цифровым преобразователем (АЦП).

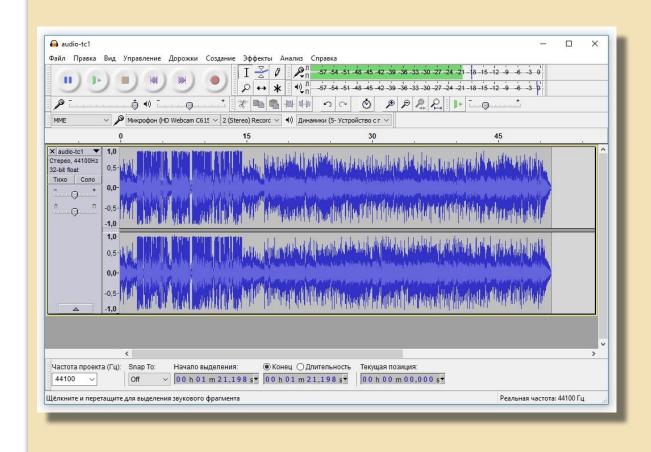
Чем больше частота и глубина дискретизации звука, тем более **качественным** будет звучание оцифрованного звука

Частота дискретизации звука это количество измерений громкости звука за одну секунду: от 8000 до 48 000 измерений громкости звука за одну секунду (Гц)

#### Характеристика цифрового звука:

- 1. Частота
- 2. Глубина

Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука


```
Объем файла (бит) = частота (Гц) * глубина (бит) * время (сек) * режим (моно = 1, стерео = 2)
```

Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно").



Самое высокое качество оцифрованного звука, соответствующее качеству аудио-СD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").





Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV или в формате со сжатием МРЗ



## Выводы 6. Двоичное кодирование звука

Звук - это волна с непрерывно меняющейся амплитудой и частотой. Децибел - единица измерения звука.

#### Схема дискретизации

непрерывного сигнала в цифровой. Устройство, выполняющее процесс дискретизации и оцифровки аналоговых сигналов, называется аналого-цифровым преобразователем (АЦП)



#### Звуковые редакторы

позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук можно сохранять формате WAV или в формате со сжатием МРЗ

#### Характеристика цифрового звука:

- 1. Частота
- 2. Глубина

# Источники

1. Как компьютер складывает числа

https://www.youtube.com/watch?v=YuSgZ173Utg

- 2. Иллюстрации из Интернет
- 3. Старые наши презентации