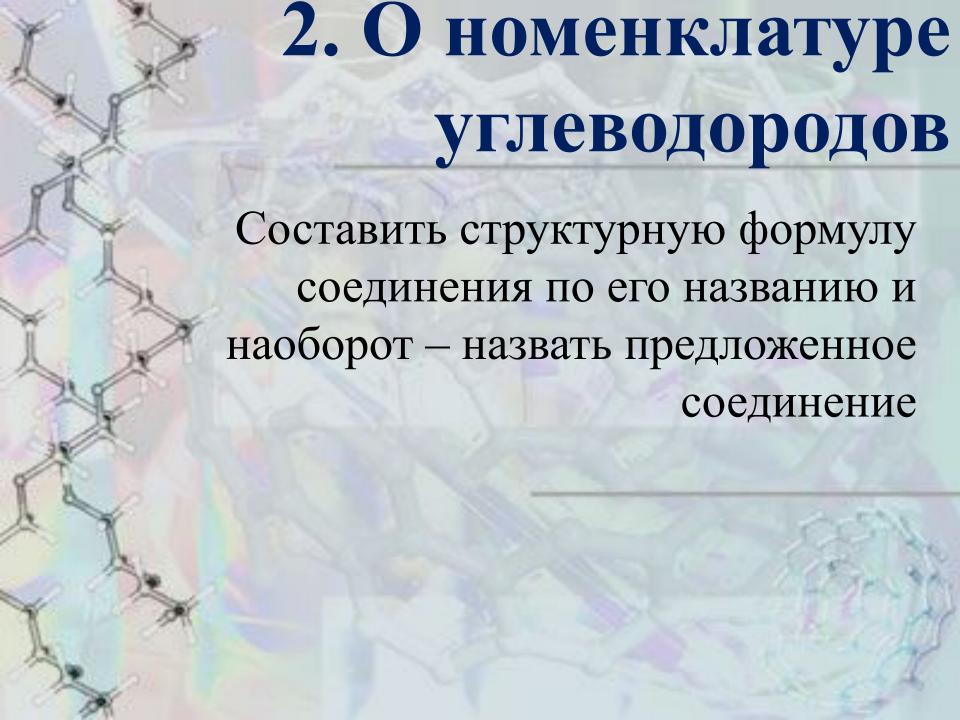

Цели урока: Строение, свойства, получение Актуализация знаний углеводородов Составлять структурные и объемные формулы углеводородов, давать им Формирование умений названия Составлять уравнения, анализировать, Совершенствование находить закономерности, навыков информацию, строить речевое высказывание Химически грамотное поведение в профессиональной деятельности и в Личностные быту при обращении с химическими результаты веществами, материалами и

процессами


Повестка дня

- 1. Об основных сведениях
- 2. О номенклатуре углеводородов
- 3. О способах получения и характерных химических свойствах
- 4. Об объемных структурных формулах углеводородов
- 5. О качестве усвоения материала темы

Задание №1

Алканы - это		
Алкены - это		
Алкины - это		
	Общая формула	
	Оощая формула	
Алканы	Алкены	Алкины
Гомологические ряды (10 штук)		
Алканы	Алкены	Алкины
		·

Задание №2

	ΑЛ	Составьте структурную формулу вещества с названием	
٤	КА	2-метилпентан	
	ны		
8		Назовите вещество $ \begin{array}{c} $	
	АЛ	Составьте структурную формулу вещества с названием	
	KE		
s		2,4-диметилпентен-1	
1	НЫ	Назовите вещество	
1		CH ₂ =CH—CH—CH ₃ CH ₃	
Ī	АЛ	Составьте структурную формулу вещества с названием	
	КИ	3,4-диметилпентадиен-1,3	
	НЫ		
in the		Назовите вещество $CH = C - CH - CH_3$ CH_3	
v			

Правила номенклатуры углеводородов

- •Для названия разветвленных соединений выбирают самую длинную цепочку из атомов углерода (для алканов и алкенов содержащую двойную или тройную связь).
- •Нумеруют выбранную цепь от одного конца до другого арабскими цифрами, причем, нумерацию начинают с того конца, к которому ближе находится заместитель (для алканов и алкенов с конца, к которому ближе находится двойная или тройная связь).
- •Указывают положение заместителя (номер атома углерода, у которого находится алкильный радикал).
- •Называют алкильный радикал в соответствии с его положением в цепи.
- •Называют основную (самую длинную углеродную цепь) (для алканов и алкенов в конце названия самой длинной цепи через дефис ставят номер атома углерода, содержащий двойную или тройную связь).
- •Если в углеводородной цепи находятся <u>несколько одинаковых</u> заместителей, то перед их названием ставится приставка "ди", "три", "тетра", "пента", "гекса" и т.д., обозначающая число присутствующих групп.
- •Если в углеводородной цепи находятся несколько разных заместителей приставки "ди", "три", "тетра", "пента", "гекса" и т.д. не учитываются. Ставится номер углеродного атома, возле которого находится первый по алфавиту заместитель. Через дефис пишется название его радикала. Ставится разделительный дефис и продолжают перечислять по алфавиту все остальные заместители, например:

 Названия углеводородных радикалов

 8 7 6 5 4 3 2 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2

(4 – пропил – 5 – эт илоктан)


•Если заместителем будет являться галоген (фтор, хлор, бром, йод), то все номенклатурные правила сохраняются.

ФОРМУЛА	НАЗВАНИЕ	ФОРМУЛА	НАЗВАНИЕ
CH ₃ -	метил	$C_{6}H_{13}-$	гексил
C_2H_5-	пите	$C_{7}H_{15}-$	гептил
$C_{3}H_{7}-$	пропил	$C_8^{}H_{17}^{}-$	октил
C_4H_9-	бутил	$C_9H_{29}-$	нонил
C ₅ H ₁₁ -	пентил	$C_{10}H_{21}-$	декил

3. О способах получения и характерных химических свойствах

Привести примеры реакций получения различных углеводородов

	- 24	
1	Каким способом можно получить	4 стадии:
	тетрахлорметан из метана	$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$
		$CH_3Cl + Cl_2 \rightarrow CH_2Cl_2 + HCl$
g		$CH_2Cl_2 + Cl_2 \rightarrow CHCl_3$
Д		$CHCl_3 + Cl_2 \rightarrow CCl_4 + HCl$
4	Каким способом можно из метана	t
	получить сажу	$CH4 \rightarrow C + 2H_2$
1	Как из предельного углеводорода	
1	получить непредельный	$CH_3 - CH_3 \rightarrow CH_2 = CH_2 + H_2$
	Каким образом линейный алкан	ALCL 100°C
	превратить в разветвленый	CH ₃ -CH ₂ -CH ₂ -CH ₃
11		CH ₃

К заданию №3

К заданию №4

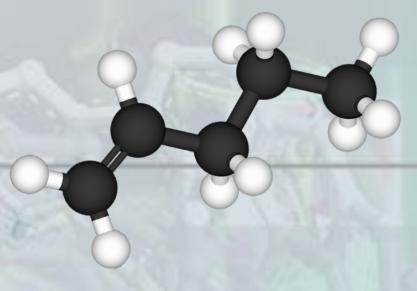
-		
00	Реакция обесцвечивания	$CH_2 = CH_2 + Br_2 \rightarrow CH_2Br - CH_2Br$
Ċ	бромной воды	
1	Как получают	
100	полиэтилен?	$n(CH_2=CH_2) \rightarrow (CH_2 - CH_2) n$
	Предложите способ	
	получения этилового	$CH_2=CH_2 + H_2O \rightarrow C_2H_5OH$
	спирта из этилена	
3	Как получить	
1	дихлорэтан из этилена?	$CH_2=CH_2 + Cl_2 \rightarrow CH_2Cl - CH_2Cl$
16		

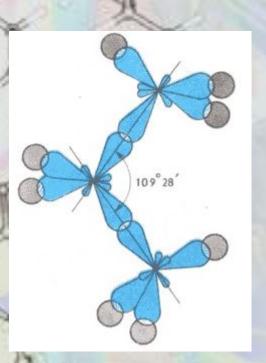
К заданию №3

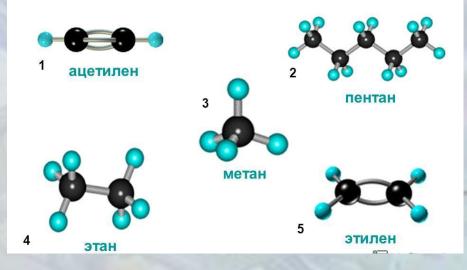
К заданию №4

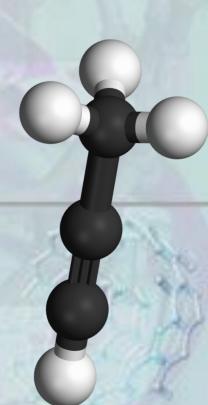
	100	
-	Какой газ при горении дает самое горячее пламя? Напишите уравнение реакции горения	$2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$
1000	Что произойдет, если карбид кальция соединить с водой? Напишите уравнение реакции	CaC ₂ + 2H ₂ O→HC≡CH+Ca(OH) ₂
0.00	Обесцвечивают ли алкины бромную воду? Подтвердите ответ уравнением реакции	CH≡CH + 2Br ₂ → CHBr ₂ – CHBr ₂
100	Какой продукт получается при взаимодействии ацетилена с водой?	$CH = CH + H_2O \rightarrow CH_3CHO$ $CH = CH + H_2O \rightarrow CH_3CHO$
	Приведите уравнение реакции	$C_6H_5C \equiv CH + H_2O \rightarrow C_6H_5C(O)CH_3$

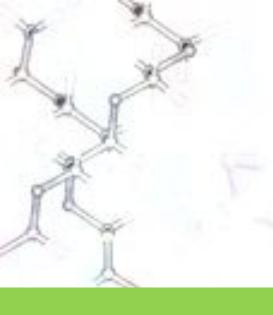
К заданию №3


К заданию №4




4. Об объемных структурных формулах углеводородов


Составить из подручных средств структурную формулу заданного органического соединения



Сконструируйте шаростержневую модель молекулы на выбор:

Задание №5

Выберите правильные формулы:

1 уровень (**1 балл**):

Среди приведенных углеводородов выберите формулы, которые могут соответствовать алкинам

 $\begin{array}{c} {\rm C_3H_6} \\ {\rm C_4H_6} \\ {\rm C_2H_2} \\ {\rm C_6H_6} \\ {\rm C_5H_8} \\ {\rm C_6H_{14}} \\ {\rm C_4H_4} \\ {\rm C_7H_{12}} \\ {\rm CH_4} \end{array}$

2 уровень (2 балла):

Среди приведенных углеводородов выберите формулы, которые могут соответствовать <u>алкенам и назовите их</u>

 $\begin{array}{c} {\rm C_3H_6} \\ {\rm C_4H_6} \\ {\rm C_2H_2} \\ {\rm C_6H_6} \\ {\rm C_5H_{10}} \\ {\rm C_6H_{14}} \\ {\rm C_4H_8} \\ {\rm C_7H_{12}} \\ {\rm CH_4} \end{array}$

3 уровень (3 балла):

Среди приведенных углеводородов выберите формулы, которые могут соответствовать <u>алканам</u>,

<u>назовите их и составьте к</u> каждому по одному изомеру

C₃H₈
C₄H₆
C₂H₆
C₆H₆
C₅H₁₀
C₆H₁₄
C₄H₁₀
C₇H₁₂
CH₄

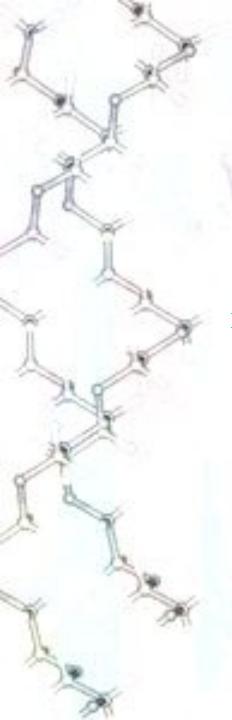
Результаты

Задание №5

Осуществите превращения:

1 уровень (2 балла):

При помощи каких реакций можно осуществить следующие превращения?


пропен→пропан → 2,2-дибромпропан

2 уровень (3 балла):

<u>этан → бромэтан → н-бутан → изобутан → оксид углерода (IV)</u>

3 уровень (4 балла):

 $\underline{CaC_2} \rightarrow \underline{C_2}\underline{H_2} \rightarrow \underline{C_2}\underline{H_4} \rightarrow \underline{C_2}\underline{H_5}\underline{Br} \rightarrow \underline{C_4}\underline{H_{10}} \rightarrow \underline{CO_2}$

1 уровень (2 балла): пропен→пропан→ 2,2-дибромпропан

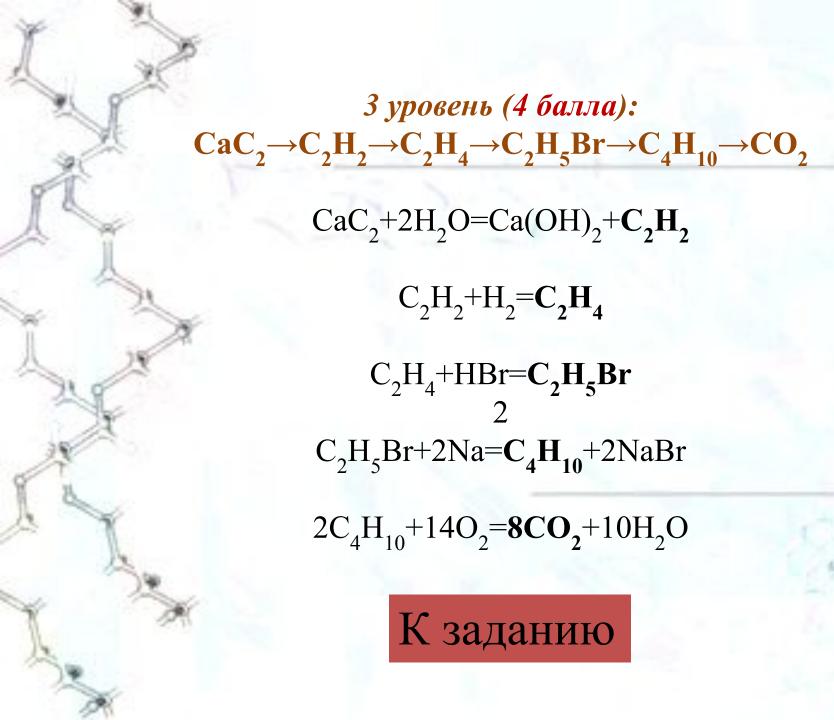
1)
$$C_3H_6+H_2 \rightarrow C_3H_8$$

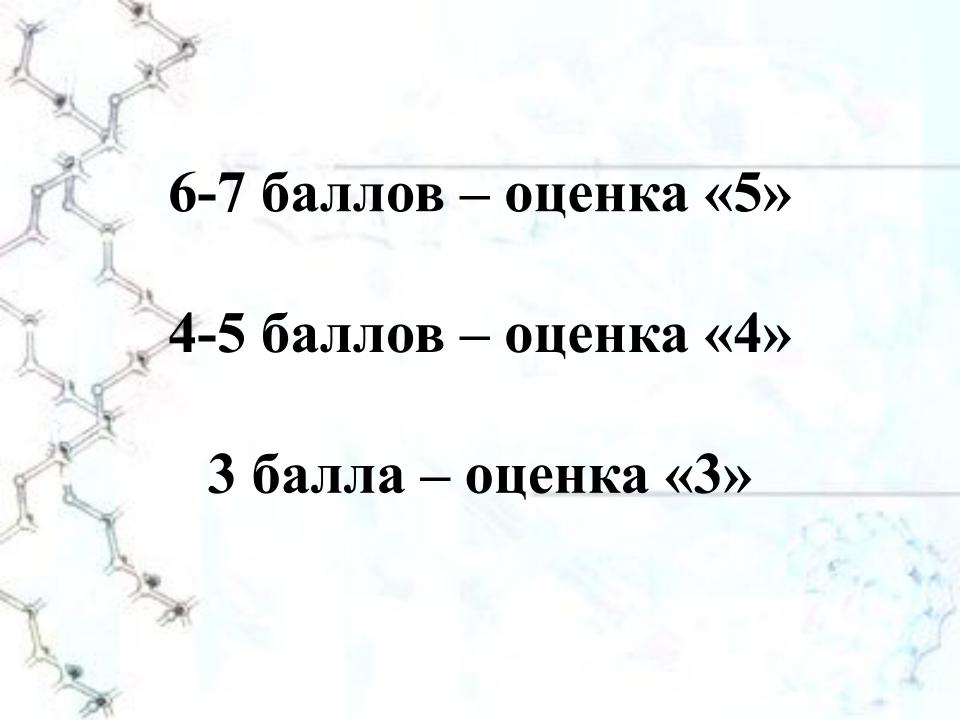
2)
$$C_3H_8+2Br_2 \rightarrow C_3H_6Br_2+2HBr$$

К заданию

2 уровень (3 балла):

этан→бромэтан→н-бутан→изобутан→оксид углерода (IV)


$$C_{2}H_{6}+Br_{2}\rightarrow C_{2}H_{5}Br+HBr$$


$$2C_{2}H_{5}Br+2Na\rightarrow C_{4}H_{10}+2NaBr$$

$$C_{4}H_{10}\rightarrow_{(AICI_{3})}\rightarrow H_{3}C-CH-CH_{3}$$

$$C_{4}H_{10}\rightarrow 8CO_{2}+10H_{2}O$$

К заданию

