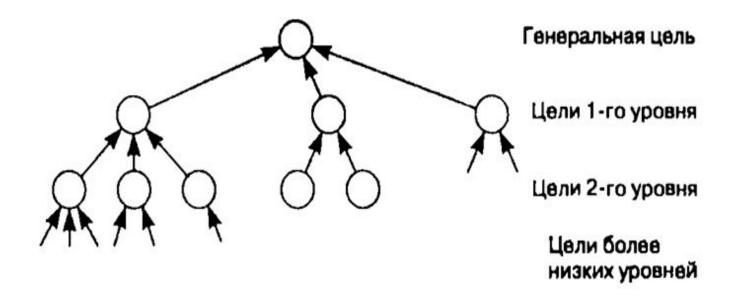
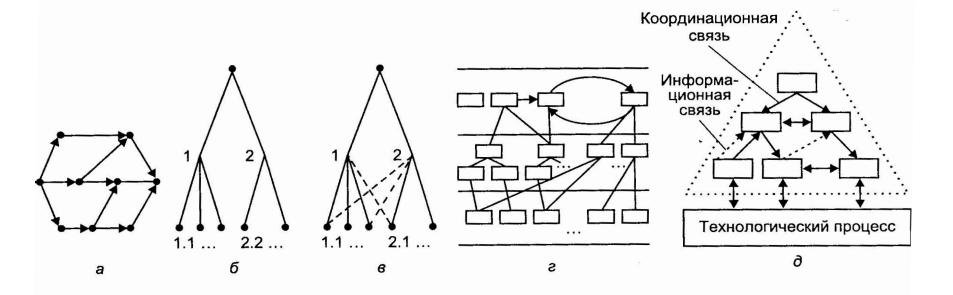
## Лекция 2. Общее понятие системы

- 1. Понятие «система».
- 2. Структура систем. Свойства систем.
- 3. Математическое определение системы.
- 4. Классификация систем.





| Цели | Подцели |  |
|------|---------|--|
| 1    | 1.1     |  |
|      | 1.2     |  |
|      | 1.3     |  |
| 2    | 2.1     |  |
|      | 2.2     |  |

|     | 1. | 2. |
|-----|----|----|
| 1.1 | +  | +  |
| 1.2 | +  |    |
| 1.3 | +  | +  |
| 2.1 | +  | +  |
| 2.2 |    | +  |

e

Ж

- (1.1) Определение. Динамической системой Σ называется сложное математическое понятие, определяемое следующими аксиомами.
- (а) Заданы множество моментов времени T, множество состояний X, множество меновенных значений входных воздействий U, множество допустимых входных воздействий  $\Omega = \{\omega \colon T \to U\}$ , множество меновенных значений выходных величин Y и множество выходных величин

$$\Gamma = \{ \gamma \colon T \to Y \}.$$

(b) (Направление времени.) Множество T есть некоторое упорядоченное подмножество множества вещественных чисел.

- (c) Множество входных воздействий  $\Omega$  удовлетворяет следующим условиям:
  - 1) (Нетривиальность.) Множество  $\Omega$  непусто.
  - 2) (Сочленение входных воздействий.) Назовем *отрезком* входного воздействия  $\omega_{(t_1,\ t_2]}$  для  $\omega \in \Omega$  сужение  $\omega$  на  $(t_1,\ t_2] \cap T$ . Тогда если  $\omega$ ,  $\omega' \in \Omega$  и  $t_1 < t_2 < t_3$ , то найдется такое  $\omega'' \in \Omega$ , что  $\omega''_{(t_1,\ t_2]} = \omega_{(t_1,\ t_2]}$  и  $\omega''_{(t_2,\ t_3]} = \omega'_{(t_2,\ t_3]}$ .
  - (d) Существует переходная функция состояния  $\varphi: T \times T \times X \times \Omega \to X$ ,

значениями которой служат состояния  $x(t) = \varphi(t; \tau, x, \omega) \in X$ , в которых оказывается система в момент времени  $t \in T$ , если в начальный момент времени  $\tau \in T$  она была в начальном состоянии  $x = x(\tau) \in X$  и если на нее действовало входное воздействие  $\omega \in \Omega$ . Функция  $\varphi$  обладает следующими свойствами:

- 1) (Направление времени.) Функция  $\varphi$  определена для всех  $t \gg \tau$  и не обязательно определена для всех  $t < \tau^1$ ).
- 2) (Согласованность.) Равенство  $\varphi(t; t, x, \omega) = x$  выполняется при любых  $t \in T$ , любых  $x \in X$  и любых  $\omega \in \Omega$ .
- 3) (Полугрупповое свойство.) Для любых  $t_1 < t_2 < t_3$  и любых  $x \in X$  и  $\omega \in \Omega$  имеем

$$\varphi(t_3; t_1, x, \omega) = \varphi(t_3; t_2, \varphi(t_2; t_1, x, \omega), \omega).$$

- 4) (Причинность.) Если  $\omega$ ,  $\omega' \in \Omega$  и  $\omega_{(\tau, t]} = \omega'_{(\tau, t]}$ , то  $\varphi(t; \tau, x, \omega) = \varphi(t; \tau, x, \omega')$ .
- (е) Задано выходное отображение  $\eta: T \times X \to Y$ , определяющее выходные величины  $y(t) = \eta(t, x(t))$ . Отображение  $(\tau, t] \to Y$ , задаваемое соотношением  $\sigma \mapsto \eta(\sigma, \varphi(\sigma; \tau, x, \omega))$ ,  $\sigma \in (\tau, t]^2)$ , называется отрезком выходной величины,  $\tau$ . е. сужением  $\gamma_{(\tau, t]}$  некоторого  $\gamma \in \Gamma$  на  $(\tau, t]$ .

