Метаболизм веществ и энергии

Обмен веществ

- это комплекс биохимических и энергетических процессов, обеспечивающих использование пищевых веществ для нужд организма и удовлетворения его потребностей в пластических и энергетических веществах

ЭТАПЫ ОБМЕНА ВЕЩЕСТВ

- **1.Пищеварение** это переработка веществ корма в усвояемую форму. При этом начальные субстраты обмена теряют свою специфичность.
- **2.Всасывание** оно протекает в стенках желудочно-кишечного тракта ,но наиболее важное значение играет слизистая тонкого отдела кишечника.
- 3. Анаболизм это синтез собственных веществ из более простых, которые поступают либо с кормом, либо из образующихся в процессе катаболизма.
- 4. **Катаболизм** это окислительный распад собственных веществ организма в клетках или поступающих с кормом.
- 5.**Выведение конечных продуктов обмена**, протекает с затратой энергии.

ОБМЕН ЭНЕРГИИ

Обмен веществ тесно связан с обменом энергии. Энергия тратиться на всех этапах обмена, а освобождается только на 4, в процессе катаболизма. Энергию все живое берет из внешней среды.

фототрофы синтезируют органические вещества за счёт энергии света;

Процесс фототрофного питания называется фотосинтезом. Фототрофы — это растения и некоторые бактерии (в том числе синезелёные водоросли). К хемотрофам относятся многие бактерии.

Организмы, живущие за счет неорганических источников углерода (например, углекислого газа), называются автотрофами.

Хемотрофы

Синтезируют органические вещества за счёт энергии химических связей.

Хемосинтезирующие бактерии получают энергию от различных химических реакций — окисления водорода, серы, железа, аммиака и других веществ.

Этапы энергетического обмена

Первая стадия подготовительная Вторая стадия бескислородное окисление

Третья стадия кислородное окисление

Проходит в пищеварительном тракте или в пищеварительных вакуолях

Проходит в цитоплазме клеток

Проходит в митохондриях

Биополимеры распадаются до мономеров: белки до аминокислот, полисахариды до моносахаридов, липиды до глицерина и жирных кислот В результате процессов окисления без участия кислорода (гликолиза, спиртового брожения и пр.) мономеры биополимеров распадаются на более простые соединения (молочная кислота, этиловый спирт, ацетон, уксусная кислота и т.д.)

Дальнейшее окисление веществ с участием кислорода до конечных продуктов – углекислого газа и воды

Энергия рассеивается в виде тепла Энергия используется на синтез АТФ (при окислении одной молекулы глюкозы синтезируется 2 молекулы АТФ) Энергия используется на синтез АТФ (при окислении одной молекулы глюкозы синтезируется 36 молекул АТФ) Катаболизм органических веществ в тканях сопровождается потреблением кислорода и выделением CO_2 . Этот процесс называют **тканевым дыханием.** Кислород в этом процессе используется как акцептор водорода от окисляемых (дегидрируемых) веществ (субстратов), в результате чего синтезируется вода. Процесс окисления можно представить следующим уравнением:

$$SH_2 + 1/2O_2 \rightarrow S + H_2O$$
.

Различные окисляемые органические вещества (S-субстраты) представляют собой метаболиты катаболизма, их дегидрирование является экзергоническим процессом. Энергия, освобождающаяся в ходе реакций окисления, либо полностью рассеивается в виде тепла, либо частично тратится на фосфорилирование АДФ с образованием АТФ. Организм превращает около 40% энергии, выделяющейся при окислении, в энергию макроэргических связей АТФ. Большинство организмов в биосфере использует этот способ или очень сходный с ним (в качестве терминального акцептора водорода может быть не кислород, а другое соединение) как основной источник энергии, необходимый для синтеза внутриклеточной АТФ. Таким путем клетка превращает химическую энергию питательных веществ, поступивших извне, в энергию, утилизируемую на разные виды работы.

Реакция дегидрирования и способ превращения выделившейся энергии путем синтеза ATФ — это энергетически сопряженные реакции. Синтез ATФ из AДФ называется окислительным фосфорилированием.

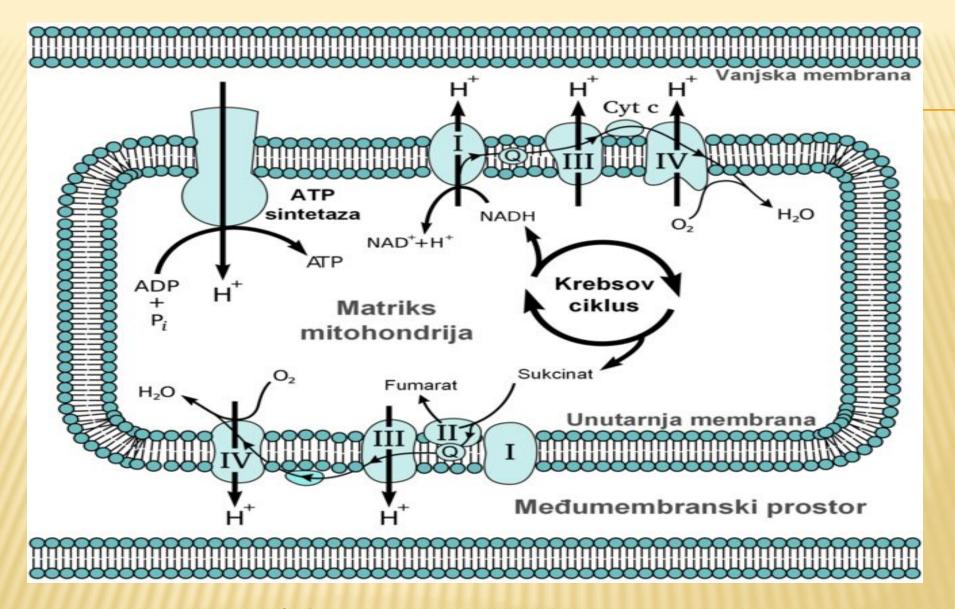
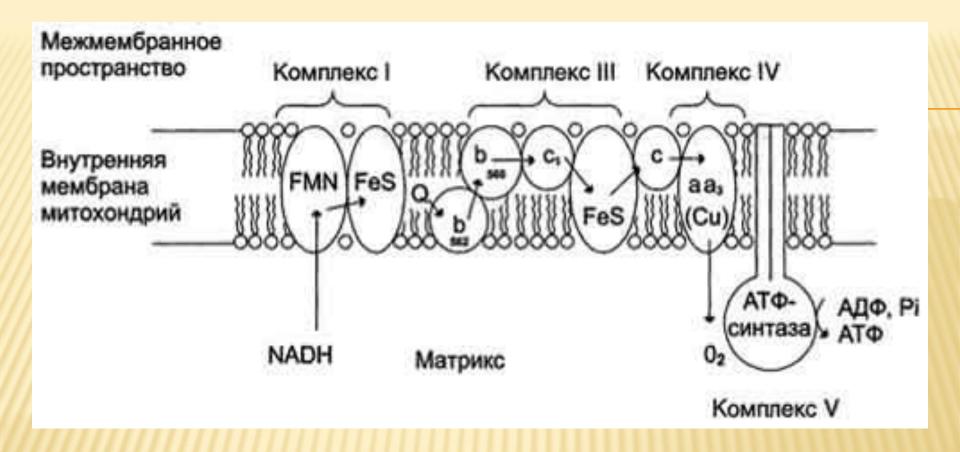



рис. 1. Окислительное фосфорилирование

ЦЕПЬ ПЕРЕНОСА ЭЛЕКТРОНОВ — ЦПЭ

Указанное выше уравнение для окислительно-восстановительной реакции представляет собой обобщенную форму, так как изображает процесс окисления субстратов как **прямое** дегидрирование, причем кислород выступает в роли непосредственного акцептора водорода. На самом деле кислород получает электроны иным образом. Существуют промежуточные переносчики при транспорте электронов от исходного донора электронов SH_2 к терминальному акцептору — O_2 . Полный процесс представляет собой цепь последовательных окислительно-восстановительных реакций, в ходе которых происходит взаимодействие между переносчиками.

Каждый промежуточный переносчик вначале выступает в роли акцептора электронов и протонов и из окисленного состояния переходит в восстановленную форму. Затем он передает электрон следующему переносчику и снова возвращается в окисленное состояние. На последней стадии переносчик передает электроны кислороду, который затем восстанавливается до воды. Совокупность последовательных окислительновосстановительных реакций называется цепью переноса (транспорта) электронов, или дыхательной цепью.

Рис.2. Митохондриальная цепь переноса электронов:

I, III и IV — высокомолекулярные комплексы, расположенные во внутренней мембране митохондрий; комплекс II — сукцинатдегидрогеназа, в отличие от других FAD-зависимых дегидрогеназ локализована во внутренней мембране митохондрий, но на рисунке не представлена. Цитохром с — низкомолекулярный гемсодержащий белок, обладающий подвижностью в липидном слое мембраны митохондрий. Белки FeS содержат негеминовое железо и входят в состав ферментных комплексов I, II и III. Кофермент Q — небелковый компонент ЦПЭ.

ЦЕПЬ ПЕРЕНОСА ЭЛЕКТРОНОВ — ЦПЭ

Промежуточными переносчиками в дыхательной цепи у высших организмов являются коферменты: NAD⁺ (никотинамид-адениндинуклеотид), FAD и FMN (флавинадениндинуклеотид флавинмононуклеотид), кофермент Q (CoQ), семейство гемсодержащих белков — цитохромов (обозначаемых как цитохромы b, c_1 , c, a, a_3) и белки, содержащие негеминовое железо. Все участники этой цепи организованы в четыре окислительновосстановительных комплекса (рис. 5), связанные убихиноном (CoQ) и цитохромом с.

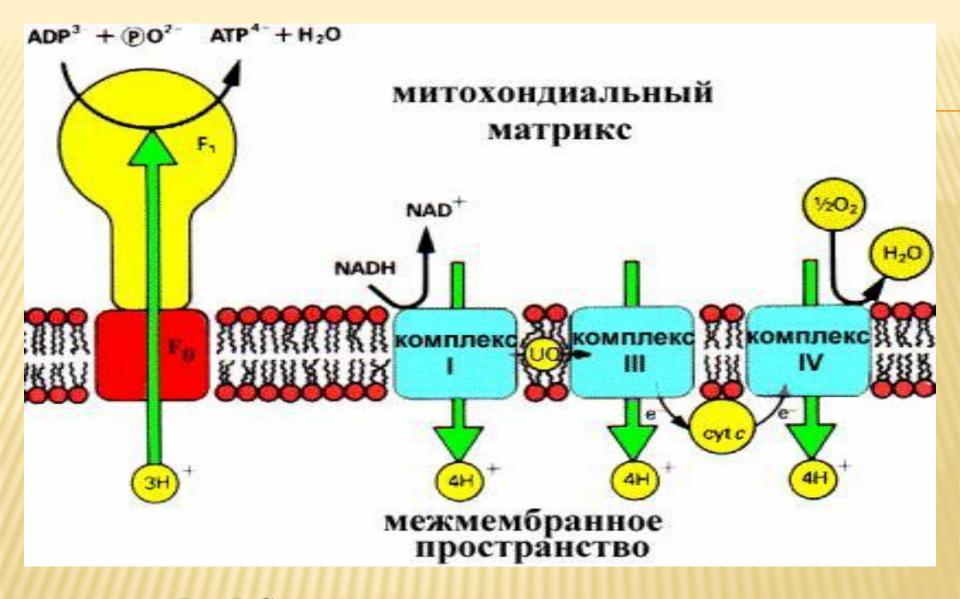
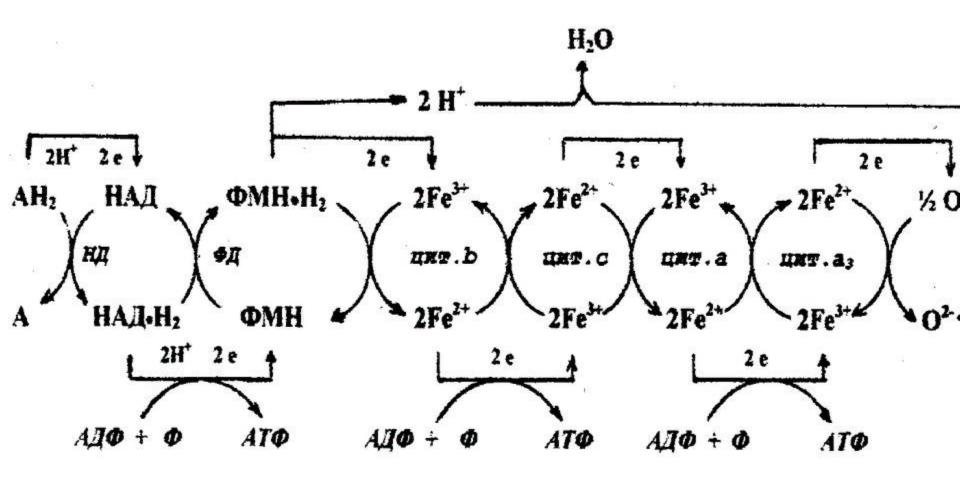



Рис.5. Сопряжение цепи транспорта электронов и фосфорилирования АДФ посредством протонного градиента

Процесс начинается с переноса протонов и электронов от окисляемого субстрата на коферменты NAD+ или FAD. Это определяется является тем, ЛИ дегидрогеназа, катализирующая первую стадию, NAD-зависимой или FADзависимой. NAD-зависимая дегидрогеназа катализирует реакции окисления непосредственно субстрата (первичная дегидрогеназа). NAD⁺ является коферментом и выполняет акцептора водорода (рис. 3). FAD-зависимая функцию первичной дегидрогеназа также выполняет дегидрогеназы. Кофермент FAD является акцептором водорода от субстрата. Если процесс начинается с NAD+, то следующим переносчиком будет NADH-дегидрогеназа, коферментом которой является FMN.

Схема дыхательной цепи

Тип участвующей дегидрогеназы зависит от природы субстрата. Но каким бы ни был исходный субстрат, электроны и протоны от флавинов переносятся к коферменту Q, а дальше пути электронов и протонов расходятся.

Электроны с помощью системы цитохромов достигают кислорода, который затем, присоединяя протоны, превращается в воду.

Спасибо за внимание