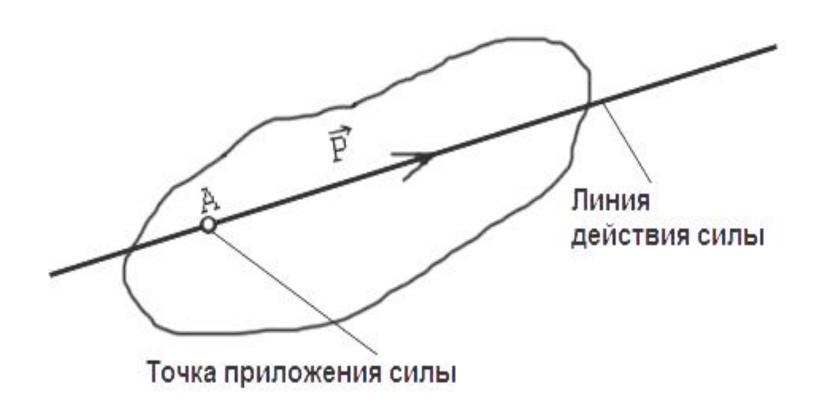
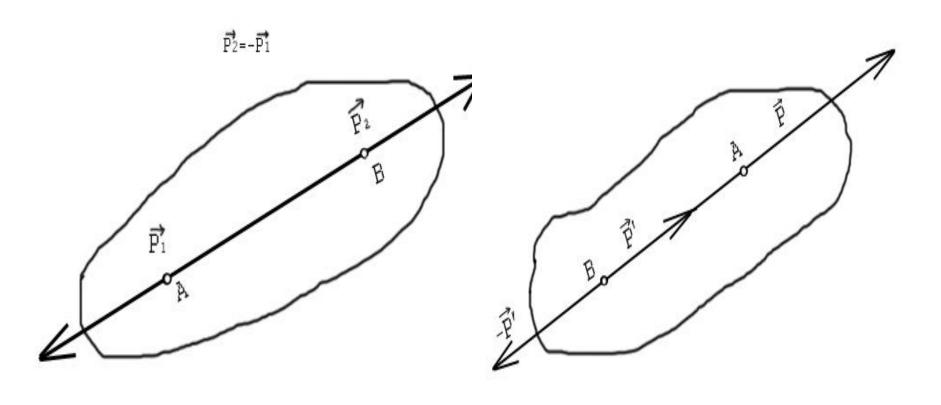
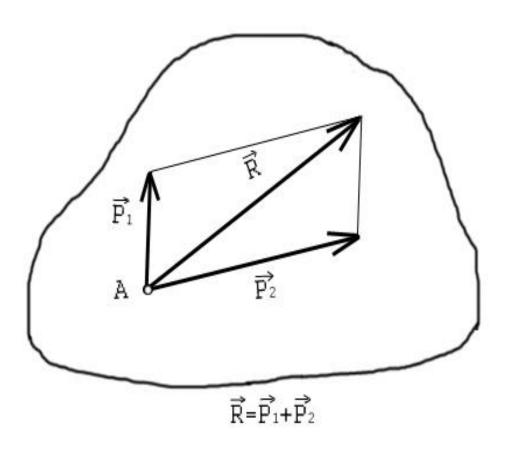
СТАТИКА

Основные понятия



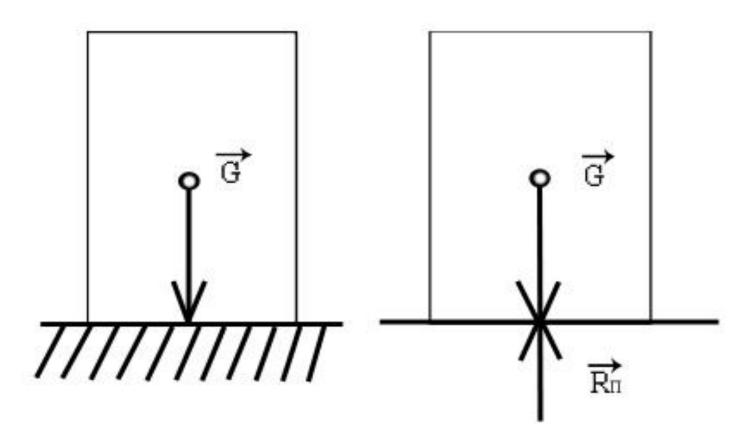
Аксиомы Статики



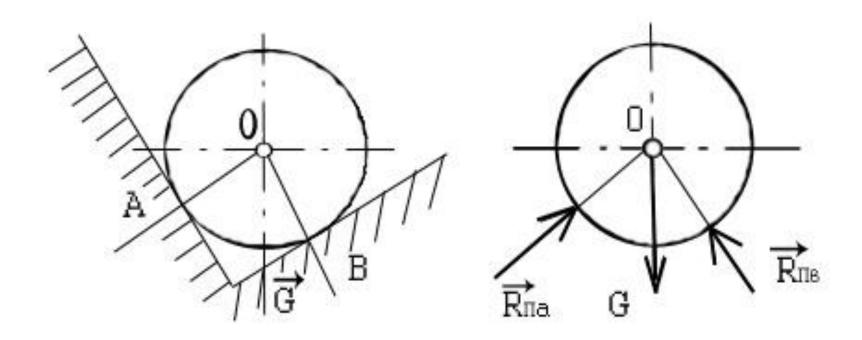


Связи и их реакции

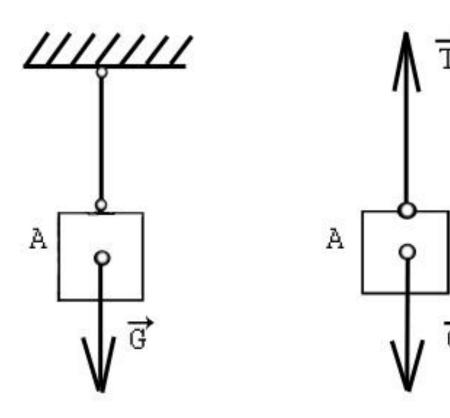
Гладкая поверхность



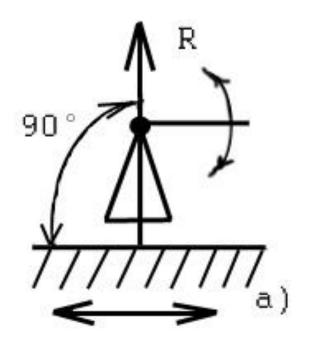
Гладкая поверхность

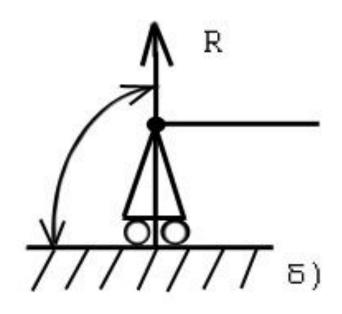


Гибкая связь

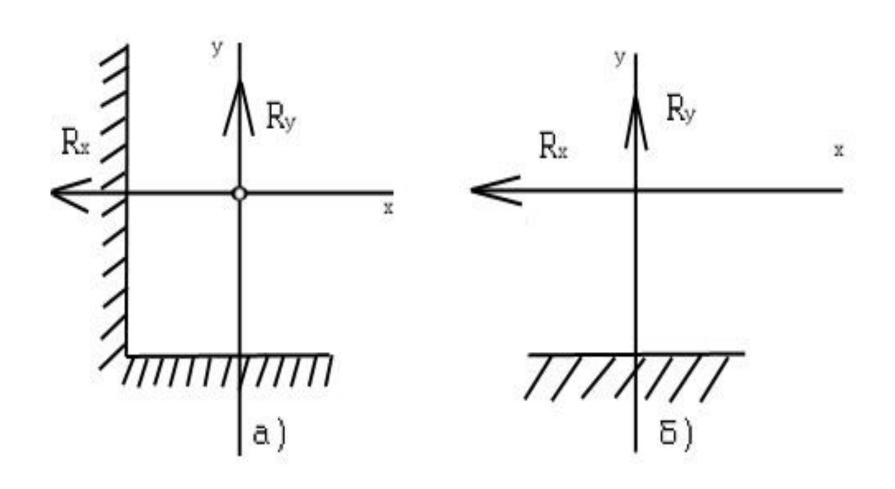


Подвижный шарнир

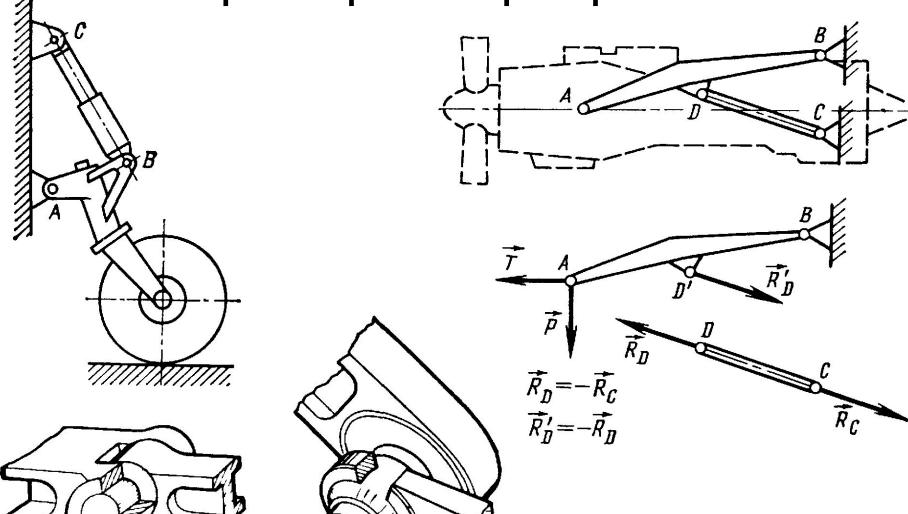




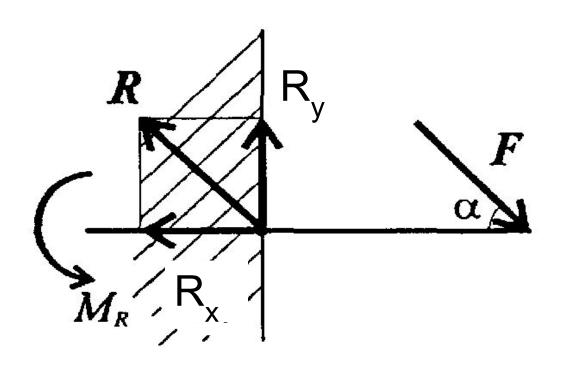
Неподвижный шарнир



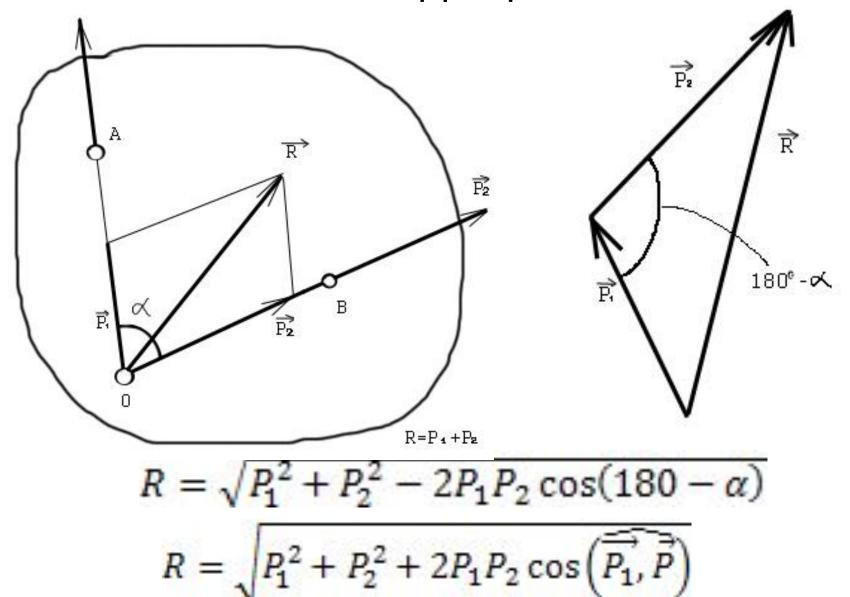
Примеры шарниров



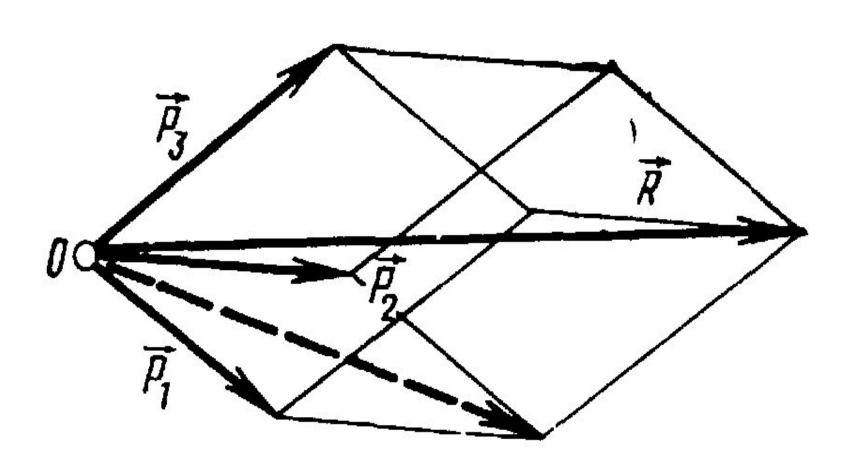
Защемление или «заделка»



Система сходящихся сил

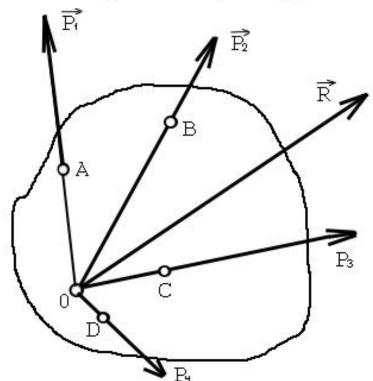


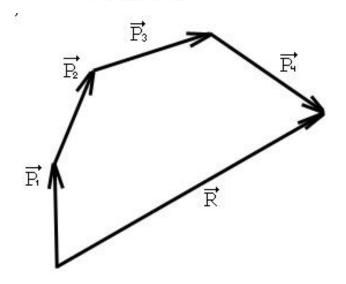
Пространственная система из трех сил



$$R = \overrightarrow{P_1} + \overrightarrow{P_2} + \overrightarrow{P_3} + \overrightarrow{P_4}$$

$$\vec{R} = \sum_{i=1}^{n} P_i$$



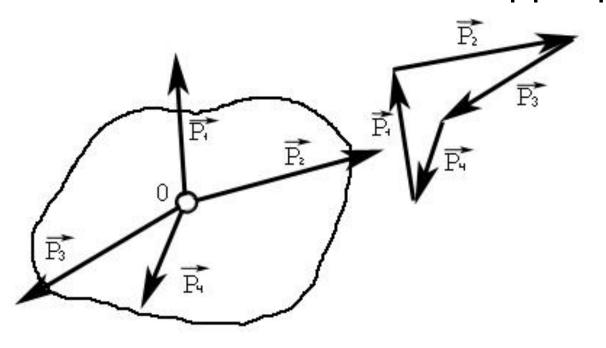


$$\vec{R} = R_x \vec{i} + R_y \vec{j} + R_z \vec{k}$$

$$R = (\sum_{i=1}^{n} P_{ix})^{2} + (\sum_{i=1}^{n} P_{iy})^{2} + (\sum_{i=1}^{n} P_{iz})^{2}$$

$$\cos\left(\overrightarrow{R},x\right) = \frac{R_x}{R}, \cos\left(\overrightarrow{R},y\right) = \frac{R_y}{R}, \cos\left(\overrightarrow{R},z\right) = \frac{R_z}{R}$$

Равновесие системы сходящихся сил



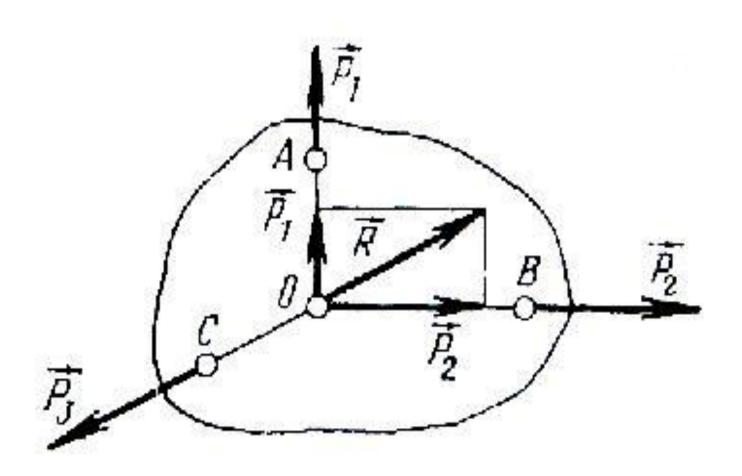
$$\sqrt{\left(\sum_{i=1}^{n} P_{ix}\right)^{2} + \left(\sum_{i=1}^{n} P_{iy}\right)^{2} + \left(\sum_{i=1}^{n} P_{iz}\right)^{2}} = 0$$

$$\sum_{i=1}^{n} P_{ix} = 0$$
 $\sum_{i=1}^{n} P_{iy} = 0$ $\sum_{i=1}^{n} P_{iz}$

$$\sum_{i=1}^{n} P_{iy} = 0$$

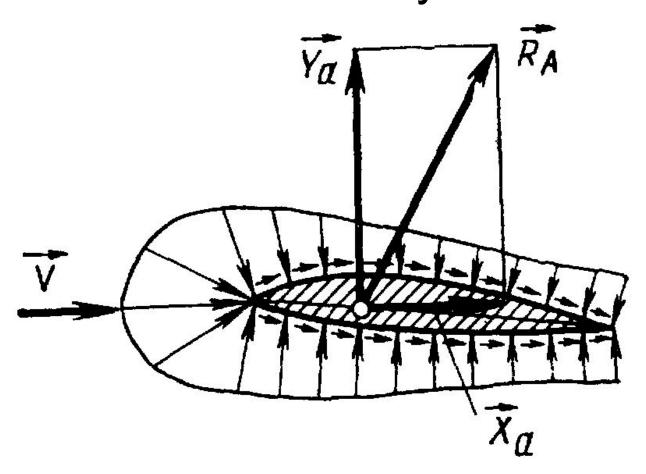
$$\sum_{i=1}^{n} P_{iz}$$

Теорема о трёх силах



м

Сходящиеся силы, приложенные к самолёту



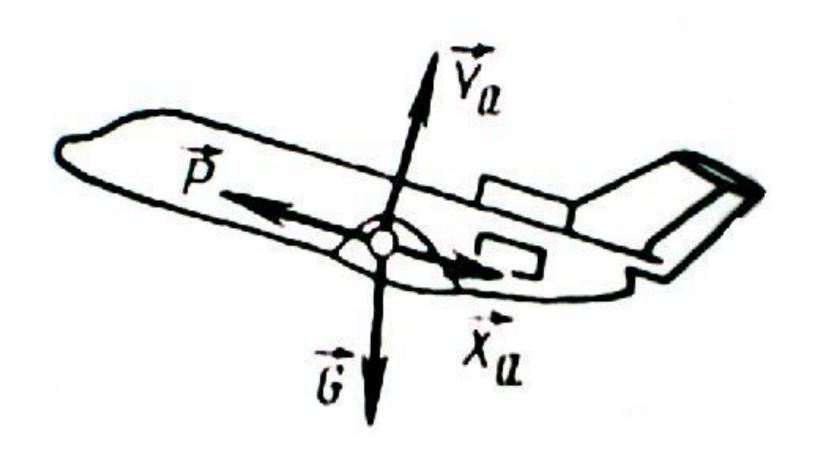
Ra – аэродинамическая сила крыла

G – сила тяжести (вес BC),

P — тяга винта (или газотурбинного двигателя),

Ха – сила лобового сопротивления ВС

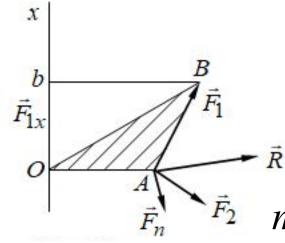
Ya – аэродинамическая подъемная сила



Теорема Вариньона

о моменте равнодействующей сходящейся системы сил

$$OA \cdot \vec{R}_{x} = \sum_{i=1}^{n} (OA \cdot F_{ix}).$$



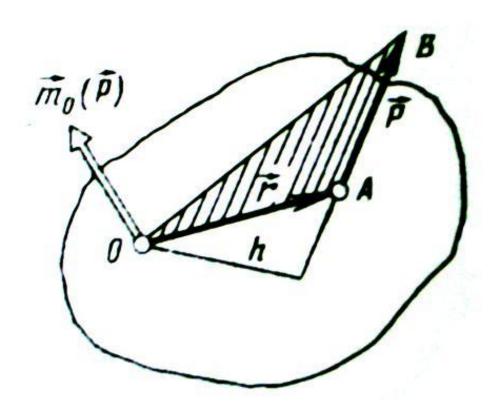
$$R = \sum_{i=1}^{n} F_i \qquad R_x = \sum_{i=1}^{n} F_{ix}$$

$$m_0(\ddot{F_1}) = 2n\pi.\Delta OAB = OA \cdot Ob = OA \cdot \ddot{F_1}_x$$

$$m_0(R) = \sum_{i=1}^n m_0(F_i)$$

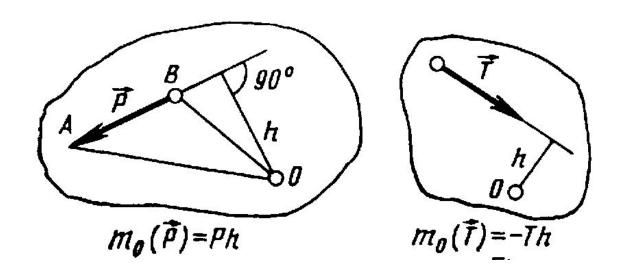
M

Момент силы, относительно центра, представленный в виде вектора



$$|\stackrel{\bowtie}{r} \times \stackrel{\bowtie}{P}| = 2 S \Delta A O B$$

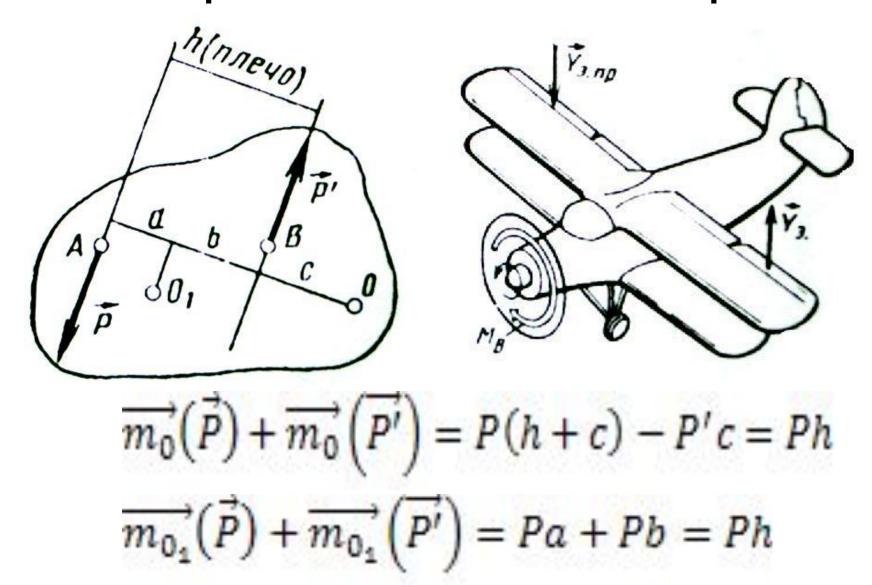
$$m_o(P) = r \times P$$



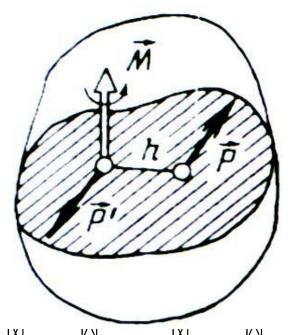
$$m_0(\stackrel{\bowtie}{P}) = 2 \cdot 0,5Ph = 2 \cdot S \Delta AOB$$

 $m_0(\stackrel{\bowtie}{P}) = Ph$

Пара сил. Момент пары



Момент пары, как вектор



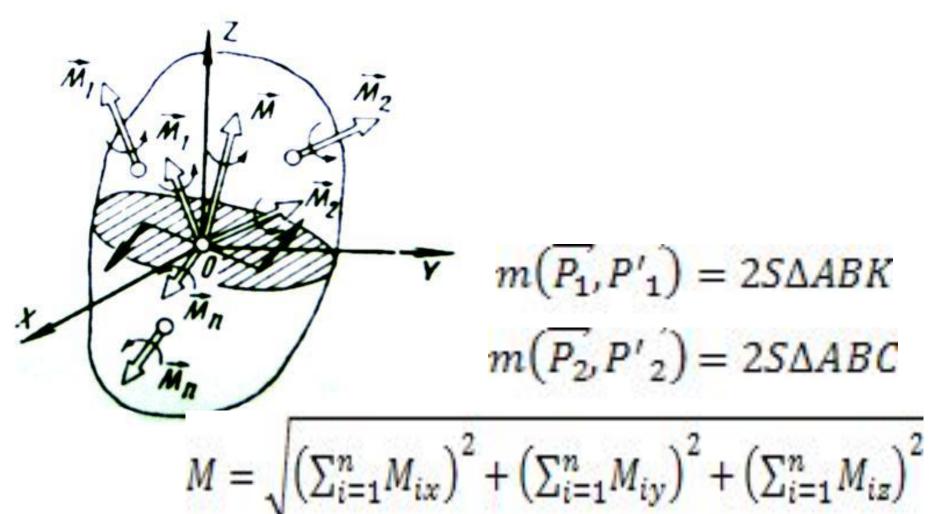
$$m_{O}(P) + m_{O}(P') = M(P, P')$$

$$\vec{r}_{O}(\vec{P}') + \vec{m}_{O}(\vec{P}) = (\vec{r}_{A} \times \vec{P}') + (\vec{r}_{B} \times \vec{P}).$$

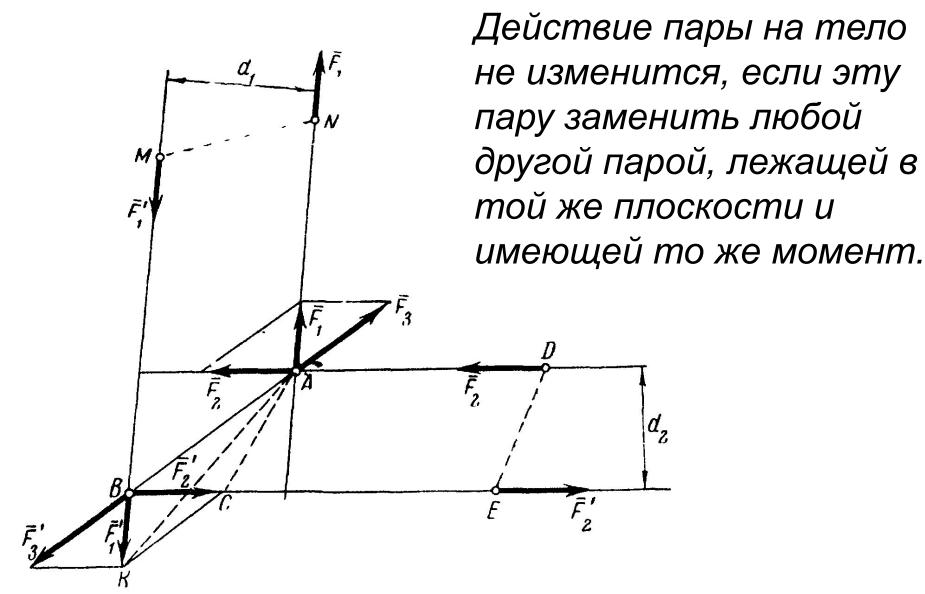
$$\vec{r}_{B} = \vec{r}_{A} + \vec{r}_{AB} \times \vec{P}' = -\vec{P},$$

$$\overrightarrow{m}_{O}(\overrightarrow{P}') + m_{O}(\overrightarrow{P}) = -(\overrightarrow{r}_{A} \times \overrightarrow{P}) + (\overrightarrow{r}_{A} \times \overrightarrow{P}) + (\overrightarrow{r}_{AB} \times P)$$

Сложение пар. Равновесие тела под действием системы пар



ЭКВИВАЛЕНТНОСТЬ ПАР

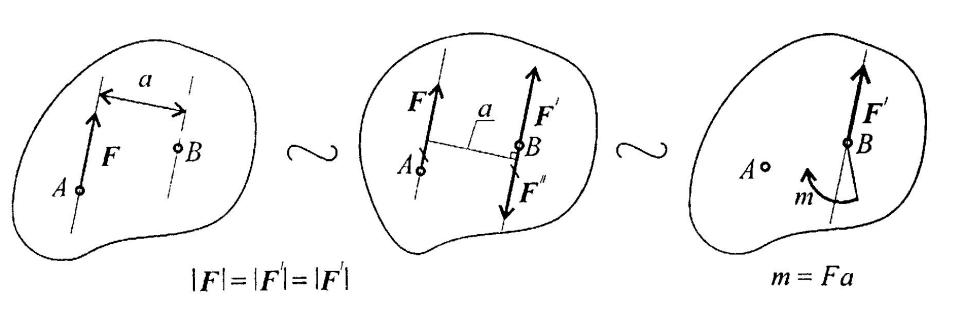


Свойства пары сил:

- 1. Действие пары на тело не изменится, если переместить пару в другое положение в плоскости ее действия.
- 2. Действие пары на тело не изменится, если одновременно изменить модуль сил пары и величину ее плеча, сохраняя при этом численное значение и знак, момента пары.

w

Теорема Пуансо о параллельном переносе сил



Привидение к точке плоской системы произвольно расположенных сил



$$M_{2n_0} = \sum_{k=0}^{n} m_0(F_k)$$
 $M_{2n_0} = m_1 + m_2 + m_3 \mathbb{Z} + m_n$

Точку приложения равнодействующей можно определить по формуле

$$d = \frac{M_{ZA}}{F_{ZA}}$$

где *d* – расстояние от выбранной точки приведения до точки приложения равнодействующей;

 $M_{\it en}$ – величина главного момента относительно выбранной точки приведения;

 $F_{\rm en}$ – величина главного вектора системы сил.

Условие равновесия произвольной плоской системы сил

$$F_{\mathbf{r}\pi} = \sqrt{F_{\mathbf{r}\pi_{x}}^{2} + F_{\mathbf{r}\pi_{y}}^{2}} = 0 \Longrightarrow egin{cases} \sum_{0}^{n} F_{kx} = 0; \ \sum_{0}^{n} F_{ky} = 0, \end{cases}$$

где F_{kx} и F_{ky} — проекции векторов на оси координат.

$$M_{\mathbf{r}\pi_O} = \sum_{0}^{n} m_O(\mathbf{F}_k) = 0 \Longrightarrow \sum_{0}^{n} m_A(\mathbf{F}_k) = 0; \ \sum_{0}^{n} m_B(\mathbf{F}_k) = 0,$$

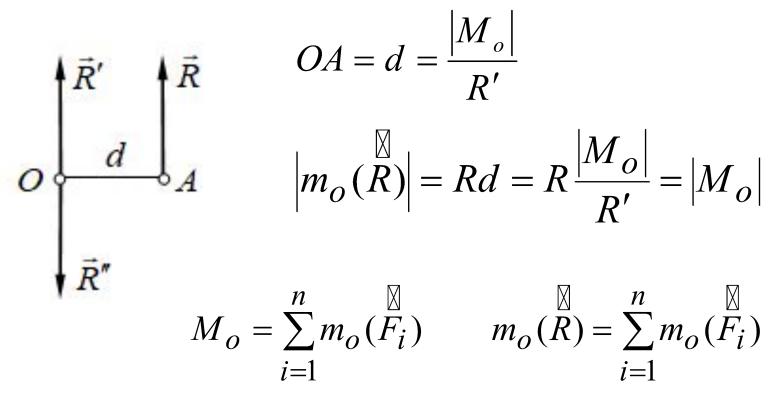
где A и B — разные точки приведения.

Основная равновесия:

$$\begin{cases} \sum_{0}^{n} F_{kx} = 0; \\ \sum_{0}^{0} F_{ky} = 0; \\ \sum_{0}^{0} m_{A}(\mathbf{F}_{k}) = 0; \\ \sum_{0}^{0} m_{B}(\mathbf{F}_{k}) = 0; \\ \sum_{0}^{0} m_{C}(\mathbf{F}_{k}) = 0 \end{cases}$$

уравнения моментов.

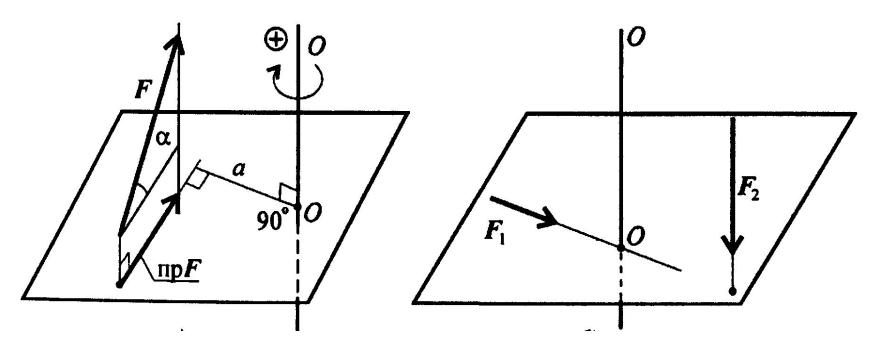
Теорема Вариньона о моменте равнодействующей произвольной плоской системы сил



$$M_{O} = \sum_{i=1}^{n} m_{O}(F_{i}) \qquad m_{O}(R) = \sum_{i=1}^{n} m_{O}(F_{i})$$

×

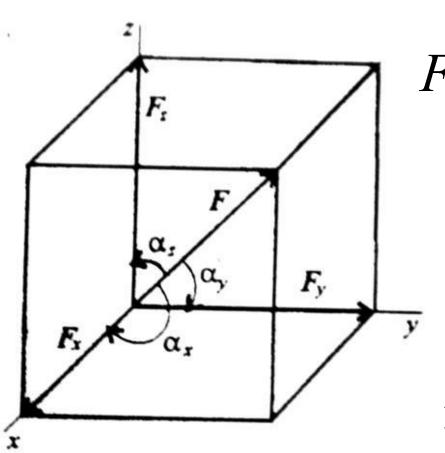
Пространственная система сил



 $Moo(F) = np. F \cdot a,$ a - pacctoshue ot оси до проекции <math>F; np. F - проекция силы на плоскость,перпендикулярную оси

np. $F = F\cos\alpha$; $M_{OO}(F) = F\cos\alpha \cdot a$.

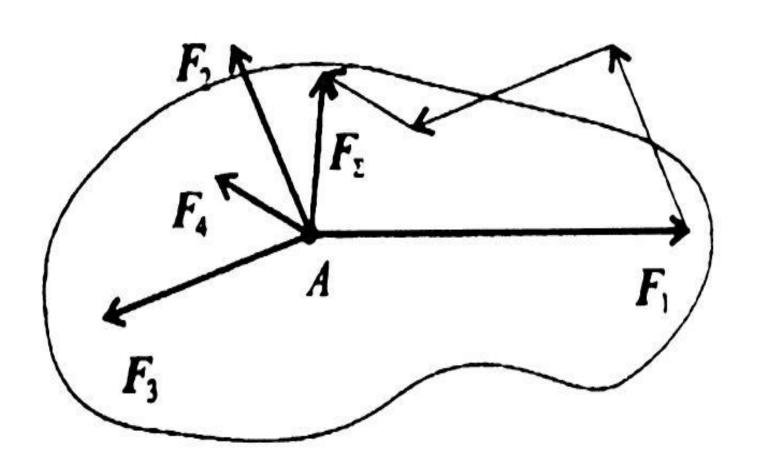
Пространственная сходящаяся системы сил

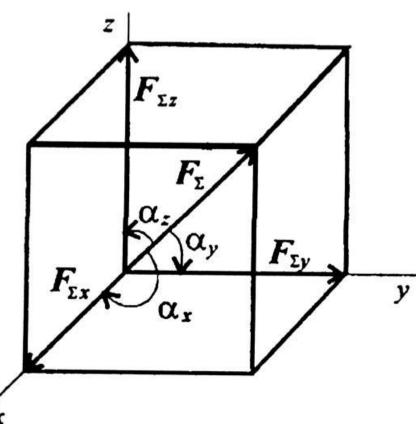


$$F = \sqrt{F_x^2 + F_y^2 + F_z^2}$$

$$F_{x} = Fcosa_{x};$$
 $F_{y} = Fcosa_{y};$
 $F_{z} = Fcosa_{z},$
 $\alpha_{x}, \quad \alpha_{y}, \quad \alpha_{z} - \text{ углы}$
между вектором F и осями координат.

Пространственная сходящихся системы сил





$$F_{\sum x} = \sum_{k=1}^{n} F_{kx}$$
 $F_{\sum y} = \sum_{k=1}^{n} F_{ky}$

$$F_{\Sigma z} = \sum_{k=1}^{n} F_{kz}$$

$$F = \sqrt{F_{\Sigma x}^2 + F_{\Sigma y}^2 + F_{\Sigma z}^2}$$

$$\alpha_{\mathcal{X}} = (F_{\Sigma} F_{\Sigma \mathcal{X}})$$

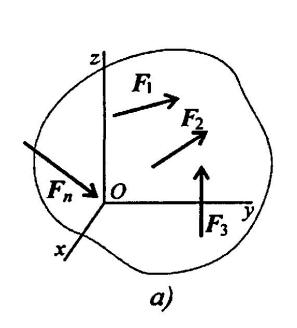
$$\alpha_{v} = (F_{\Sigma} F_{\Sigma v})$$

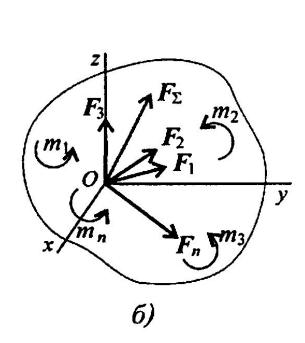
$$\alpha_z = (F_{\Sigma} F_{\Sigma z})$$

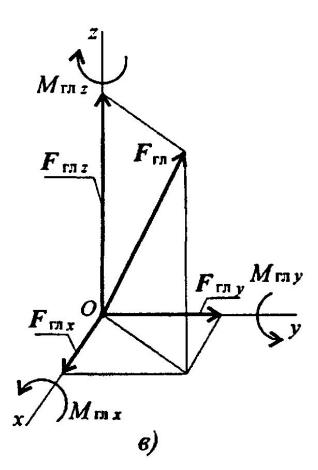
$$\alpha_{x} = (F_{\Sigma} F_{\Sigma x})$$
 $\cos \alpha_{x} = \frac{F_{\Sigma x}}{F_{\Sigma}}$
 $\cos \alpha_{y} = \frac{F_{\Sigma y}}{F_{\Sigma}}$
 $\cos \alpha_{z} = \frac{F_{\Sigma z}}{F_{\Sigma}}$

м

Произвольная пространственная система сил







$$F_{\Gamma\Pi} = \sqrt{F_{\Gamma\Pi}^2 _{x} + F_{\Gamma\Pi}^2 _{y} + F_{\Gamma\Pi}^2 _{z}}$$

$$F_{\Gamma \Pi \ X} = \sum_{k=1}^{n} F_{kX}$$
 $F_{\Gamma \Pi \ Y} = \sum_{k=1}^{n} F_{kY}$ $F_{\Gamma \Pi \ Z} = \sum_{k=1}^{n} F_{kZ}$

$$M_{\Gamma \Pi} = \sum_{k=1}^{n} m_k$$
 $M_{\Gamma \Pi} = \sqrt{M_{\Gamma \Pi \ X}^2 + M_{\Gamma \Pi \ Y}^2 + M_{\Gamma \Pi \ Z}^2}$

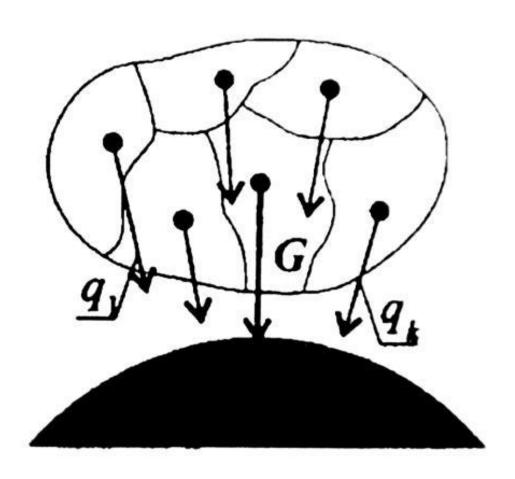
$$M_{\Gamma \Pi \ y} = \sum_{k=1}^{n} m_{ky}$$
 $M_{\Gamma \Pi \ x} = \sum_{k=1}^{n} m_{kx}$ $M_{\Gamma \Pi \ Z} = \sum_{k=1}^{n} m_{kz}$

Уравнения равновесия пространственной системы сил

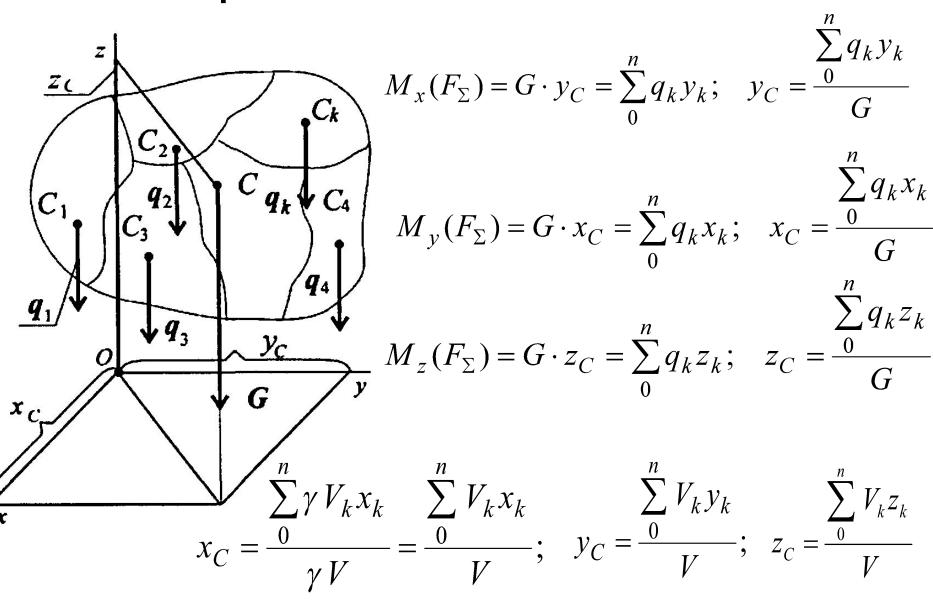
$$\sum_{k=1}^{n} F_{kx} = 0 \qquad \sum_{k=1}^{n} F_{ky} = 0 \qquad \sum_{k=1}^{n} F_{kz} = 0$$

$$\sum_{k=1}^{n} m_{kx}(F_k) = 0 \qquad \sum_{k=1}^{n} m_{ky}(F_k) = 0 \qquad \sum_{k=1}^{n} m_{kz}(F_k) = 0$$

• Сила тяжести



Точка приложения силы тяжести



v

Определение координат центра тяжести плоских фигур

Для плоских тел: V = Ah, где A — площадь фигуры, h — ее высота

$$x_{C} = \frac{\sum_{k=0}^{n} A_{k} h x_{k}}{Ah} = \frac{\sum_{k=0}^{n} A_{k} x_{k}}{A}; \qquad y_{C} = \frac{\sum_{k=0}^{n} A_{k} y_{k}}{A}; \qquad z_{C} = \frac{h}{2}.$$

Координаты центра тяжести сечения можно выразить через статический момент:

$$\sum_{0}^{n} A_{k} y_{k} = S_{x} \quad x_{C} = \frac{S_{y}}{A} \qquad \sum_{0}^{n} A_{k} x_{k} = S_{y} \quad y_{C} = \frac{S_{x}}{A}$$

Центры тяжести простейших фигур:



1. Треугольник.

Центр тяжести площади треугольника совпадает с точкой пересечения его медиан.

$$DM = MB$$
, $CM = \frac{1}{3}AM$.

2. Дуга окружности.

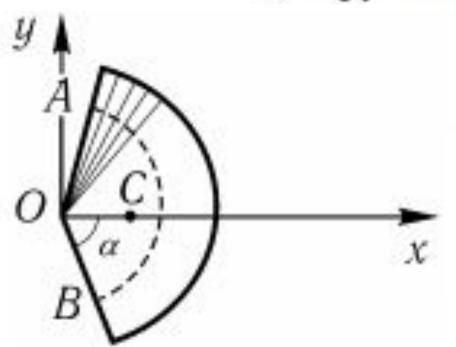
Дуга имеет ось симметрии. Центр тяжести лежит на этой оси, т. е. $y_C = 0$. $x_C = \frac{1}{L} \int\limits_{(L)} x \, dl, \, dl - 2 \int\limits_{(L)} x \, dl$ элемент дуги, $dl = R \, d\varphi$, R — радиус окружности, $x = R \cos \varphi$, $L = 2 \alpha R$,

$$x_C = \frac{1}{2\alpha R} \int_{-\alpha}^{\alpha} R \cos \varphi R \, d\varphi = \frac{R^2}{2\alpha R} \sin \varphi \bigg|_{-\alpha}^{\alpha} = R \frac{\sin \alpha}{\alpha}.$$

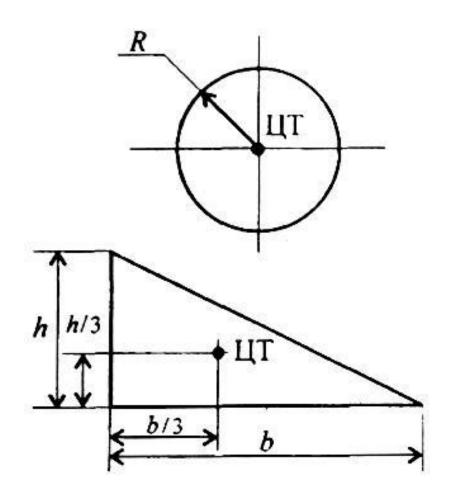
Следовательно:

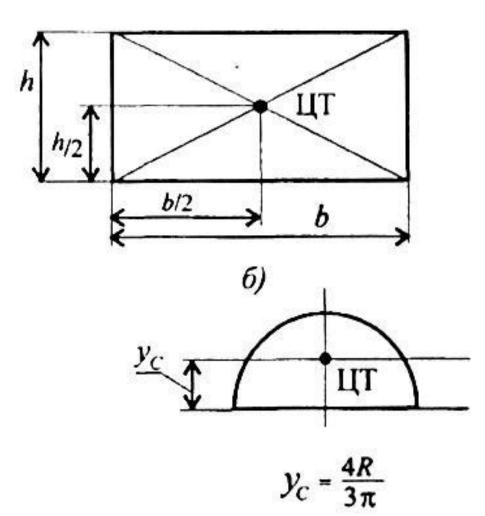
$$x_c = R \frac{\sin \alpha}{\alpha}$$

3. Круговой сектор.



$$x_c = \frac{2}{3}R \frac{\sin \alpha}{\alpha}$$



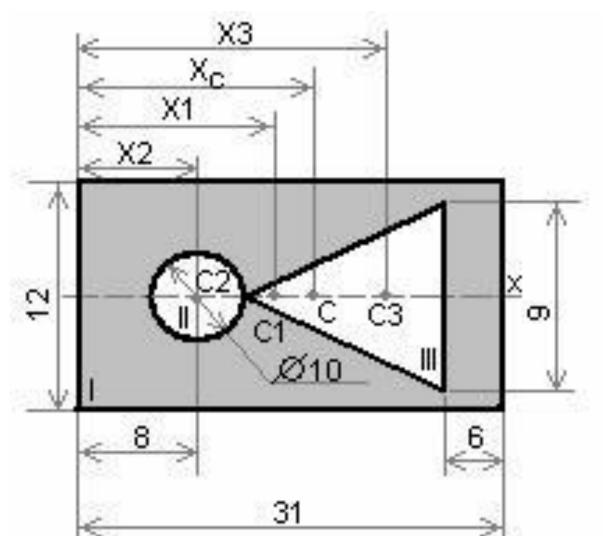


10

При решении задач используются следующие методы:

- 1) Аналитический (интегрированием)
- 2. Метод симметрии
 - Если тело имеет плоскость или ось симметрии, то центр тяжести лежит на этой плоскости или оси.
 - Если тело имеет две оси симметрии, то центр тяжести лежит в точке пересечения этих осей.
- 3. Экспериментальный (метод подвешивания тела).
- 4. Метод разбиения на части.

Разновидность метода разбиения на части — метод отрицательных площадей и объемов (для тел с полостями). **Пример**. Определить положение центра тяжести для тонкой однородной пластины, форма и размеры которой, в сантиметрах



Решение.

Данную фигуру представляем состоящей из трех простых фигур: 1 – прямоугольник, 2 – круга, 3 – треугольника.

Площади кругового и треугольного отверстий вводим в расчет со знаком минус, а площадь прямоугольника — без учета имеющихся в нем отверстий.

Площади простых фигур:

$$A_1 = 12 \cdot 31 = 372cm^2$$

 $A_2 = -\pi d^2 / 4 = -3.14 \cdot 100 / 4 = -78.5cm^2$
 $A_3 = -12 \cdot 9 / 2 = -54cm^2$

Высота треугольника h = 31 - (8 + 10/2 + 61) = 12cM

M

Координаты центра тяжести простых фигур:

$$x_1$$
=31/2=15,5 cm,
 x_2 =8cm,
 x_3 =31-6-12/3=21cm,

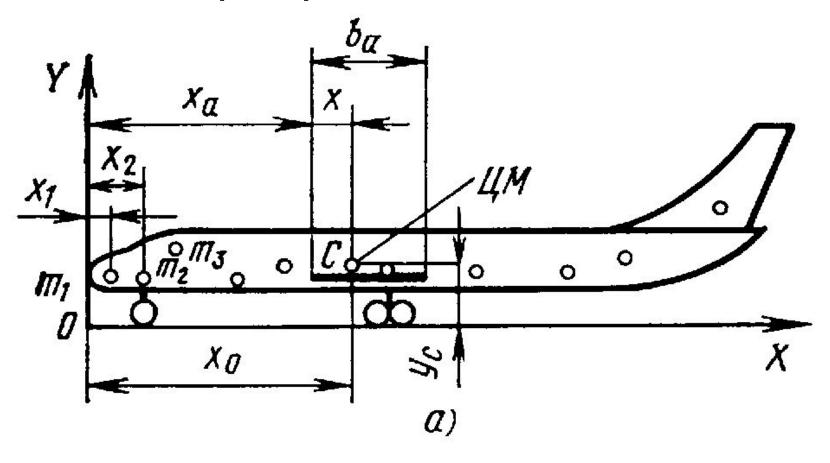
где 12/3 – расстояние от центра тяжести треугольника до его основания, равное 1/3 высоты.

Координата центра тяжести заданной фигуры

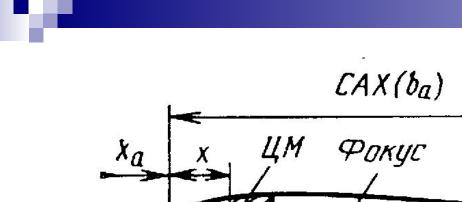
$$X_C = \frac{A_1x_1 + A_2x_2 + A_3x_3}{A_1 + A_2 + A_3} =$$

$$= \frac{372 \cdot 15.5 - 78.5 \cdot 8 - 54 \cdot 21}{372 - 78.5 - 54} = 16,7cm$$

Центровка самолёта



$$x_C = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m} \qquad y_C = \frac{m_1 y_1 + m_2 y_2 + \dots + m_n y_n}{m}$$



Предельно переднее

переонее попоженце ЦМ

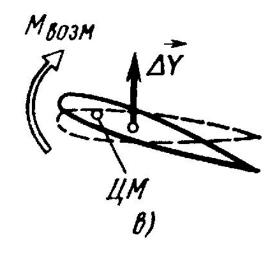
1 Диапозон Эксплуатационных центровок

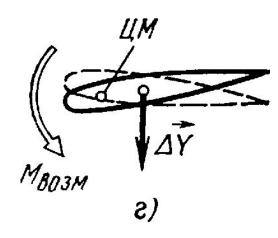
S)

Предельно заднее

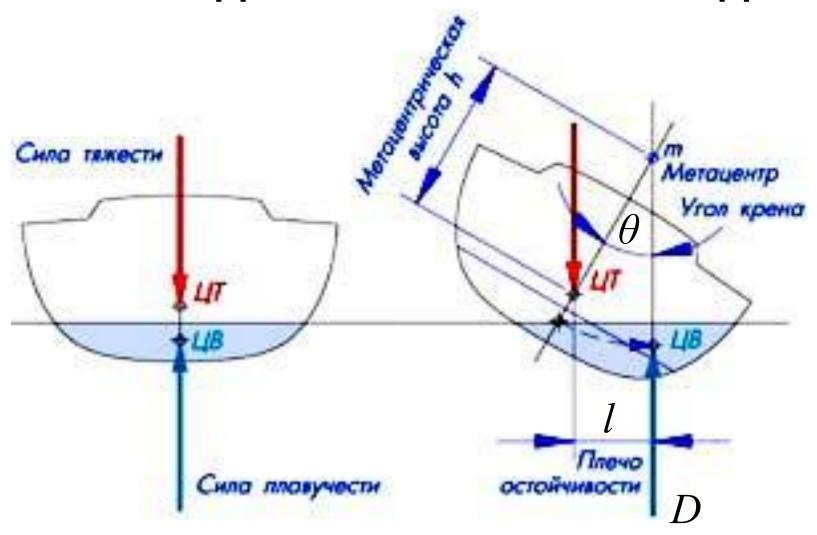
положение ЦМ

$$\overline{x} = \frac{x_C - x_a}{b_a} \cdot 100\% \quad \overline{x} = \frac{x}{b_a} \cdot 100\%$$

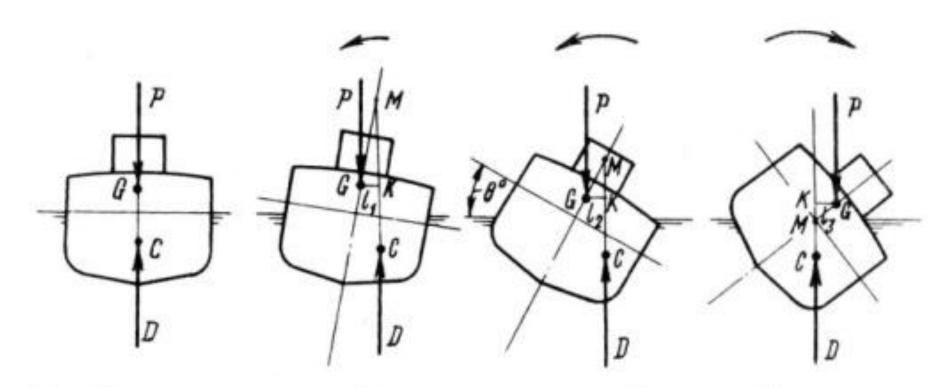




МОРЕХОДНЫЕ КАЧЕСТВАМИ СУДНА

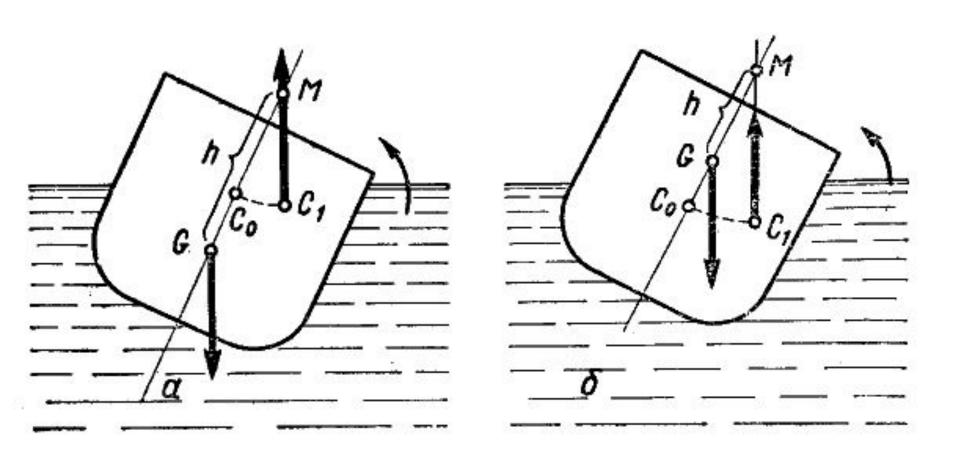


$$l=h \sin\theta$$
 $Me =Dl=D h \sin\theta$



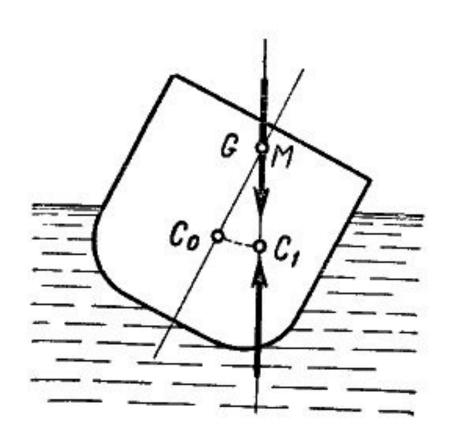
Остойчивость на малых и больших углах крена. Потря остойчивости.

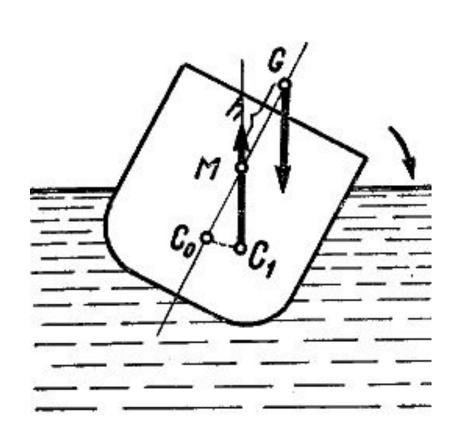
Случай остойчивого судна



Случай неостойчивого судна при безразличном равновесии

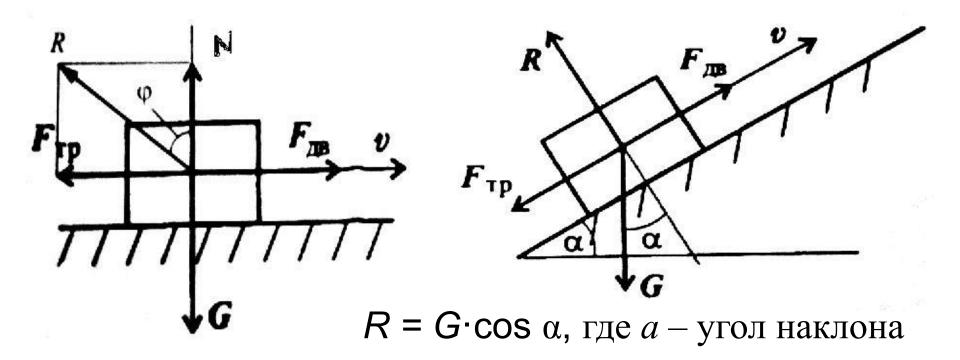
Случай неостойчивого судна при неустойчивом равновесии





Для классической яхты "Contessa 32" потеря остойчивости наступает только при крене 155°

Понятие о трении. Виды трения



плоскости к

 $F_{mp} = F_f = f N_{\text{горизонту}}$

f – коэффициент трения скольжения.

$$0 < F_f < F_{f0}$$

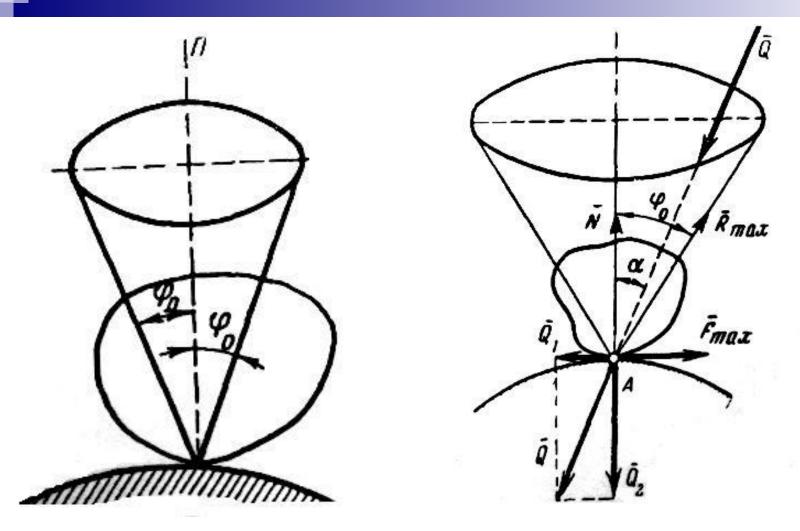
 F_{f0} – *статическая* сила трения (сила трения покоя);

 $F_{\scriptscriptstyle f}$ – динамическая сила трения

Угол трения

$$R_{max}$$
 N $tg\varphi_0 = \frac{F_{mp.max}}{N} = \frac{f_0 N}{N} = f_0$

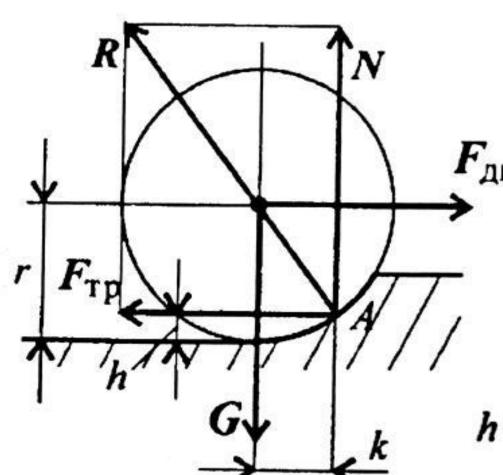
$$F_{mp.max}$$



До тех пор пока линия действия равнодействующей всех сил, приложенных к телу, проходит внутри конуса трения, скольжение тела по связи не возникает

$$\alpha \leq \phi_0$$

Трения качения



$$F_{\text{\tiny DB}}r \geq Nk; N = G;$$

$$F_{\text{дв}} \ge k \frac{G}{r}$$

где *k* – максимальное значение плеча (половина колеи) принимается за коэффициент трения качения.

Сталь по стали – k = 0,005 см; резиновая шина по шоссе – k = 0,24 см.