Логические основы компьютеров

- § 18. <u>Логика и компьютер</u>
- § 19. Логические операции
- § 20. Диаграммы
- § 21. Упрощение логических выражений

Логические основы компьютеров

§ 18. Логика и компьютер

Логика, высказывания

Логика (др.греч. λογικος) – это наука о том, как правильно рассуждать, делать выводы, доказывать утверждения.

Формальная логика отвлекается от конкретного содержания, изучает только истинность и ложность высказываний.

Аристотель (384-322 до н.э.)

Логическое высказывание — это

повествовательное предложение, относительно которого можно однозначно сказать, истинно оно или ложно.

Высказывание или нет?

- ✓ Сейчас идет дождь.
- ✓ Жирафы летят на север.
 История интересный предмет.
- ✓ У квадрата 10 сторон и все разные.

Красиво!

В городе N живут 2 миллиона человек.

Который час?

Логика и компьютер

- **Двоичное кодирование** все виды информации кодируются с помощью 0 и 1.
- Задача разработать оптимальные правила обработки таких данных.

Почему «логика»?

Результат выполнения операции можно представить как истинность (1) или ложность (0) некоторого высказывания.

Джордж Буль разработал основы алгебры, в которой используются только 0 и 1 (алгебра логики, булева алгебра).

Логические основы компьютеров

§ 19. Логические операции

Обозначение высказываний

A – Сейчас идет дождь.

В – Форточка открыта.

простые высказывания (элементарные)

Любое высказывание может быть ложно (0) или истинно (1).

Составные высказывания строятся из простых с помощью логических связок (операций) «и», «или», «не», «если ... то», «тогда и только тогда» и др.

А и В Сейчас идет дождь и открыта форточка.

А или не В Сейчас идет дождь или форточка закрыта.

если А, то В Если сейчас идет дождь, то форточка открыта.

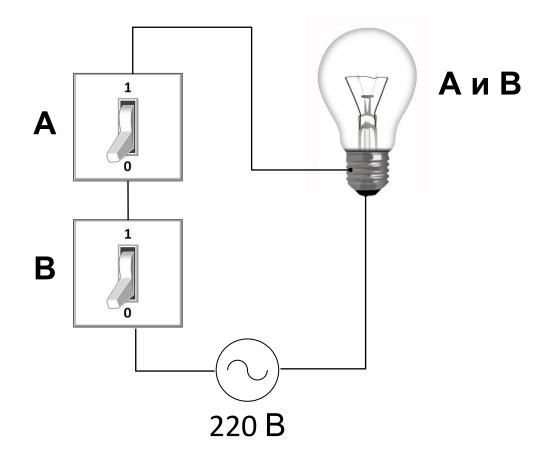
А тогда и только тогда, когда В

Дождь идет тогда и только тогда, когда открыта форточка.

Операция НЕ (инверсия)

Если высказывание **A** истинно, то «**не A**» ложно, и наоборот.

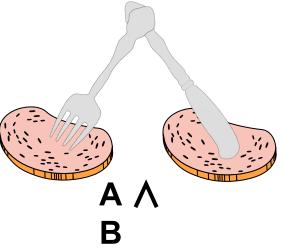
Α	не А
0	1
1	0


также **A**,¬**A**, **not A** (Паскаль), ! **A** (Си)

> таблица истинности операции НЕ

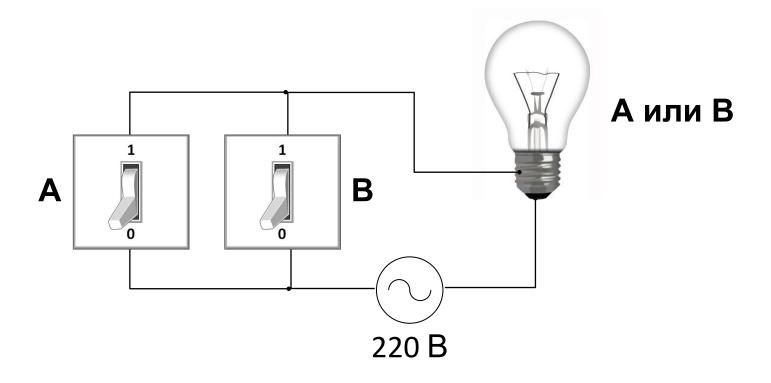
Таблица истинности логического выражения X — это таблица, где в левой части записываются все возможные комбинации значений исходных данных, а в правой — значение выражения X для каждой комбинации.

Операция И


Высказывание «**A** и **B**» истинно тогда и только тогда, когда **A** и **B** истинны одновременно.

Операция И (логическое умножение, конъюнкция)

	Α	В	АиВ
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1


также: **A·B**, **A ∧ B**, **A and B** (Паскаль), **A && B** (Си)

конъюнкция – от лат. *conjunctio* — соединение

Операция ИЛИ (логическое сложение, дизъюнкция)

Высказывание «**A** или **B**» истинно тогда, когда истинно **A** или **B**, или оба вместе.

Операция ИЛИ (логическое сложение, дизъюнкция)

Α	В	А или В
0	0	0
0	1	1
1	0	1
1	1	1

также: **A+B**, **A V B**, **A or B** (Паскаль), **A || B** (Си)

дизъюнкция – от лат. disjunctio — разъединение

Операция «исключающее ИЛИ»

Высказывание «**A** ⊕ **B**» истинно тогда, когда истинно **A** или **B**, но *не оба одновременно* (то есть **A** ≠ **B**).

«Либо пан, либо пропал».

Α	В	A ⊕ B
0	0	0
0	1	1
1	0	1
1	1	0

также:

A xor B (Паскаль), **A ^ B** (Си)

арифметическое сложение, 1+1=2

остаток

сложение по модулю 2: A ⊕ B = (A + B) mod 2

Свойства операции «исключающее ИЛИ»

$$A \oplus 0 = A$$

$$A \oplus A = 0$$

$$A \oplus 1 = \overline{A}$$

$$(A \oplus B) \oplus B = ?$$

$$A \oplus B = A \cdot \overline{B} + \overline{A} \cdot B$$

Α	В	$A \cdot B$	$\overline{A} \cdot B$	$A \cdot \overline{B} + \overline{A} \cdot B$	A B
0	0	0	0	0	0
0	1	0	1	1	1
1	0	1	0	1	1
1	1	0	0	0	0

Импликация («если ..., то ...»)

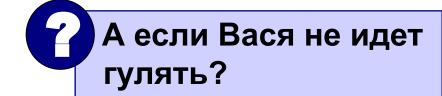
Высказывание « $A \rightarrow B$ » истинно, если не исключено, что из A следует B.

A – «Работник хорошо работает».

В – «У работника хорошая зарплата».

Α	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

$$A \rightarrow B = \overline{A} + B$$


Импликация («если ..., то ...»)

«Если Вася идет гулять, то Маша сидит дома».

A – «Вася идет гулять».

В – «Маша сидит дома».

$$A \rightarrow B = 1$$

Маша может пойти гулять (B=0), а может и не пойти (B=1)!

Α	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Эквивалентность («тогда и только тогда, ...»)

Высказывание «**A** ↔ **B**» истинно тогда и только тогда, когда **A** и **B** равны.

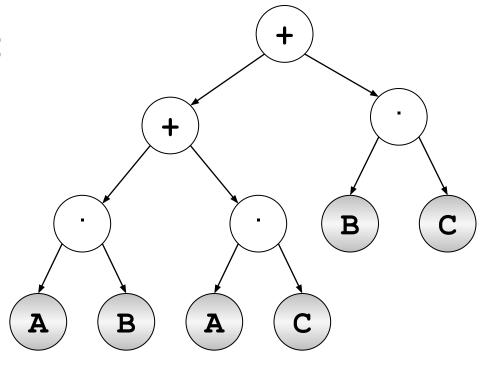
Α	В	$A \leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

$$A \leftrightarrow B = \overline{A \oplus B} = A \cdot B + \overline{A} \cdot \overline{B}$$

Базовый набор операций

С помощью операций **И, ИЛИ** и **НЕ** можно реализовать любую логическую операцию.

Сколько всего существует логических операции с двумя переменными?


Вычисление логических выражений

1 4 2 5 3

$$X = A \cdot B + A \cdot C + B \cdot C$$

Порядок вычислений:

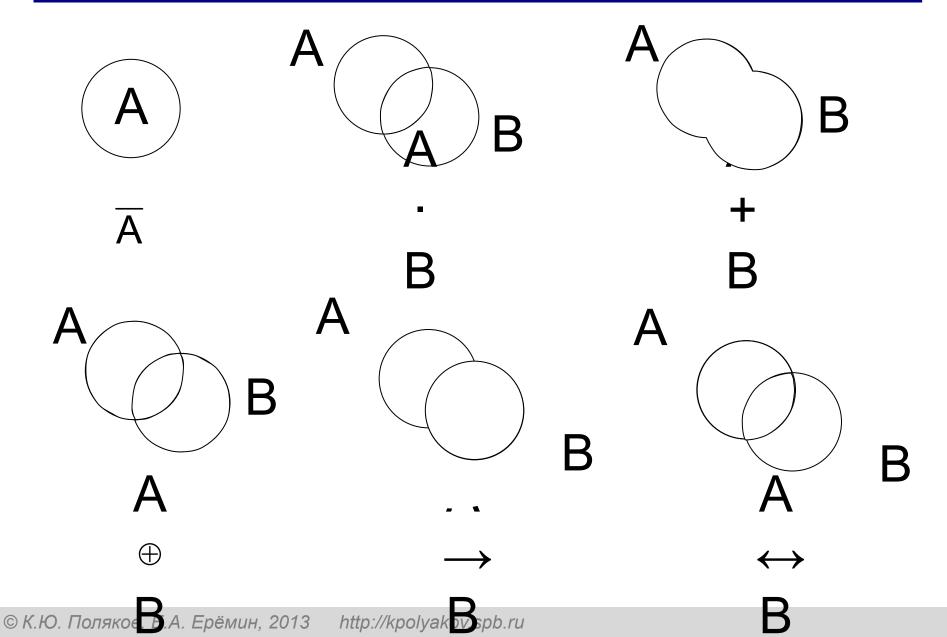
- •скобки
- •HE
- •N
- •ИЛИ, исключающее ИЛИ
- •импликация
- •эквивалентность

Составление таблиц истинности

$$X = A \cdot B + \overline{A} \cdot B + \overline{B}$$

	Α	В	A·B	$\overline{A} \cdot B$	\overline{B}	X
0	0	0	0	0	1	1
1	0	1	0	1	0	1
2	1	0	0	0	1	1
3	1	1	1	0	0	1

Логические выражения могут быть:


- тождественно истинными (всегда 1, тавтология)
- тождественно ложными (всегда 0, противоречие)
- вычислимыми (зависят от исходных данных)

Составление таблиц истинности

$$X = A \cdot B + A \cdot C + B \cdot C$$

	Α	В	C	A·B	A·C	B·C	X
0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0
2	0	1	0	0	0	0	0
3	0	1	1	0	0	1	1
4	1	0	0	0	0	0	0
5	1	0	1	0	1	0	1
6	1	1	0	1	0	0	1
7	1	1	1	1	1	1	1

Диаграммы Венна (круги Эйлера)

Упрощение логических выражений

Шаг 1. Заменить операции ⊕→↔ на их выражения через **И**, **ИЛИ** и **HE**:

$$A \oplus B = A \cdot \overline{B} + \overline{A} \cdot B$$
$$A \to B = \overline{A} + B$$

шаг 2. Раскрыть инверсию сложных выражений по формулам де Моргана:

шаг 3. Используя законь Втогики, Тупрощат Выражение, стараясь применять закон исключения третьего.

Упрощение логических выражений

$$Q = M \cdot X \cdot \overline{H} + \overline{M} \cdot X \cdot \overline{H} = (M + \overline{M}) \cdot X \cdot \overline{H} = X \cdot \overline{H}$$

$$X = (B \to A) \cdot \overline{(A + B)} \cdot (A \to C)$$

$$= (\overline{B} + A) \cdot \overline{(A + B)} \cdot \overline{(A + C)}$$

$$= (\overline{B} + A) \cdot \overline{A} \cdot \overline{B} \cdot \overline{(A + C)}$$

$$= (\overline{B} \cdot \overline{A} + A \cdot \overline{A}) \cdot \overline{B} \cdot \overline{(A + C)}$$

$$= \overline{B} \cdot \overline{A} \cdot \overline{B} \cdot \overline{(A + C)}$$

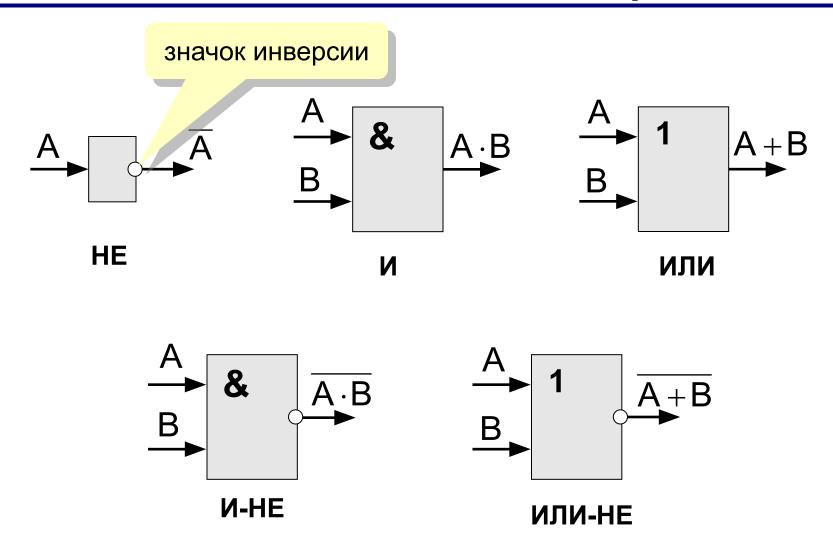
$$= \overline{B} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A}$$

$$= \overline{B} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A}$$

$$= \overline{B} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A}$$

$$= \overline{B} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A}$$

$$= \overline{B} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A}$$

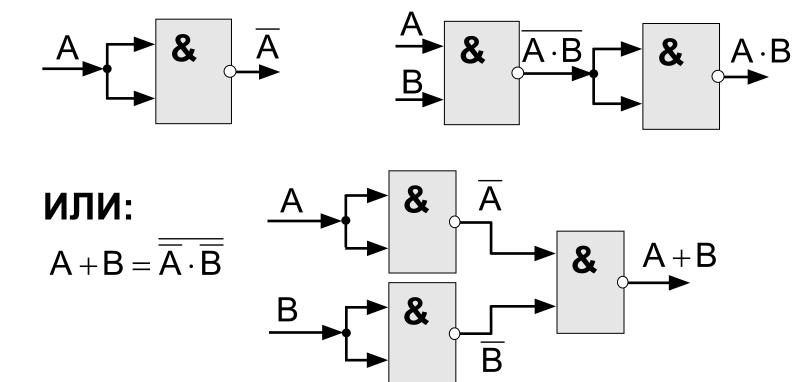

$$= \overline{B} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A}$$

$$= \overline{B} \cdot \overline{A} \cdot \overline{A}$$

$$= \overline{B} \cdot \overline{A} \cdot \overline{A}$$

$$= \overline{B} \cdot \overline{A} \cdot \overline{A}$$

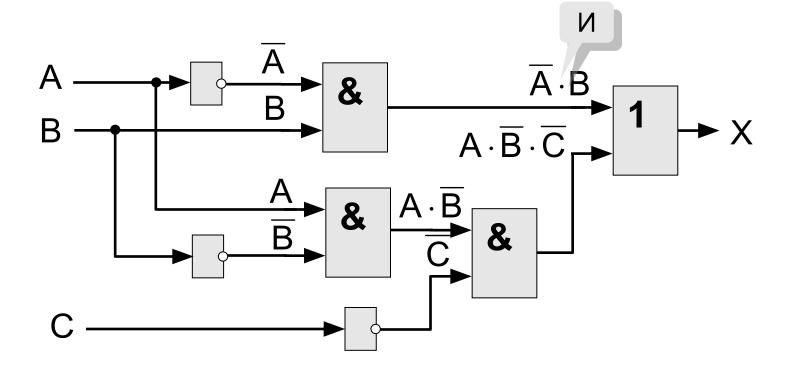
Логические элементы компьютера



Логические элементы компьютера

Любое логическое выражение можно реализовать на элементах **И-НЕ** или **ИЛИ-НЕ**.

HE:
$$\overline{A} = \overline{A} + \overline{A} = \overline{A \cdot A}$$


$$\mathbf{M}: \ \mathbf{A} \cdot \mathbf{B} = \overline{\overline{\mathbf{A} \cdot \mathbf{B}}}$$

Составление схем

последняя операция - ИЛИ

$$X = \overline{A} \cdot B + A \cdot \overline{B} \cdot \overline{C}$$

Конец фильма

ПОЛЯКОВ Константин Юрьевич

д.т.н., учитель информатики ГБОУ СОШ № 163, г. Санкт-Петербург kpolyakov@mail.ru

ЕРЕМИН Евгений Александрович

к.ф.-м.н., доцент кафедры мультимедийной дидактики и ИТО ПГГПУ, г. Пермь

eremin@pspu.ac.ru

Источники иллюстраций

- 1. <u>ru.wikipedia.org</u>
- 2. иллюстрации художников издательства «Бином»
- 3. авторские материалы