Информатика

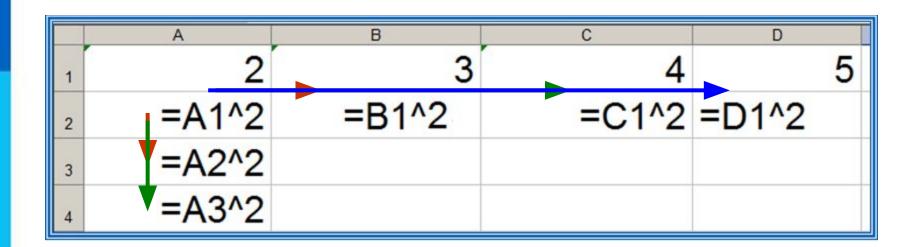
ОРГАНИЗАЦИЯ ВЫЧИСЛЕНИЙ В ЭЛЕКТРОННЫХ ТАБЛИЦАХ

ОБРАБОТКА ЧИСЛОВОЙ ИНФОРМАЦИИ В ЭЛЕКТРОННЫХ ТАБЛИЦАХ

9 класс

Ключевые слова

- относительная ссылка
- абсолютная ссылка
- смешанная ссылка
- встроенная функция
- логическая функция
- условная функция


Типы ссылок

Относительные ссылки

При кооттироов нии формулье иформий и Ав в чейники АВ 2, и СА 4 робором просомоте в в на приобретает в и формула приобретает в и д.:

Пример 1. Проведём расчёт предполагаемой численности населения города в ближайшие 5 лет, если в текущем году она составляет 40 000 человек и ежегодно увеличивается на 5%.

Внесём в таблицу исходные данные, в ячейку В3 введём формулу = B2+0,05*B2 с относительными ссылками; скопируем формулу из ячейки В3 в диапазон ячеек В4:В7.

	A	В
1	Год	Численность населения
2	Текущий	40 000
3	1	42 000
4	2	44 100
5	3	46 305
6	4	48 620
7	5	51 051

При копировании формулы, содержащей относительные ссылки, нужные нам изменения осуществлялись автоматически.

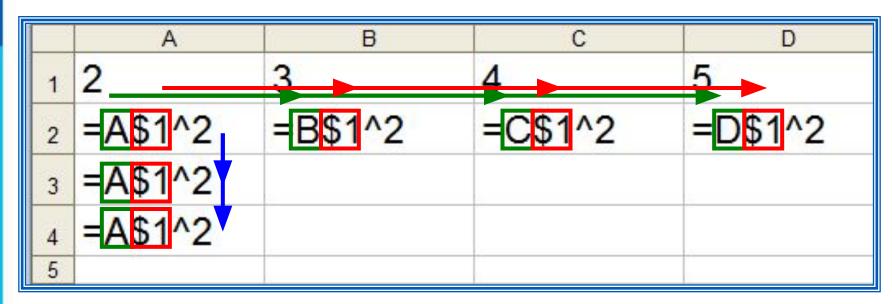
Абсолютные ссылки

При изменении позиции ячейки, содержащей формулу, абсолютная ссылка не изменяется. При копировании формулы вдоль строк и вдоль столбцов абсолютная ссылка не корректируется.

	Α	В	С	D
1	2	3	4	5
2	=\$A\$1^2	=\$A\$1^2	=\$A\$1^2	=\$A\$1^2
3	=\$A\$1^2			
4	=\$A\$1^2			
5	=\$A\$1^2			

Пример 2. Некий гражданин открывает в банке счёт на сумму 10 000 рублей. Ему сообщили, что каждый месяц сумма вклада будет увеличиваться на 1,2%. Для того чтобы узнать возможную сумму и приращение суммы вклада через 1, 2,..., 6 месяцев, гражданин провёл следующие расчёты

	Α	В	С
1	Начальная су	има вклада	10000
2	Месяц	Сумма	Приращение
3	1	10120	120
4	2	10241,44	241,44
5	3	10364,34	364,34
6	4	10488,71	488,71
7	5	10614,57	614,57
8	6	10741,95	741,95
0	1 1 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 (2)


Прокомментируйте формулы в таблице.

Смешанные ссылки

Смешанная ссылка содержит либо абсолютно адресуемый столбец и относительно адресуемую строку (\$A1), либо относительно адресуемый столбец и абсолютно адресуемую строку (A\$1).

При копировании или заполнении формулы вдоль строк и вдоль столбцов относительная часть ссылки автоматически корректируется, а абсолютная - не корректируется.

Пример 3. Требуется составить таблицу сложения чисел первого десятка, т. е. заполнить таблицу следующего вида:

	А	В	С	D	Е	F	G	Н	1	J
1		1	2	3	4	5	6	7	8	9
2	1									
3	2									
4	3									
5	4									
6	5									
7	6									
8	7									
9	8									
10	9									

При заполнении любой ячейки этой таблицы складываются соответствующие ей значения ячеек столбца А и строки 1.

	Α	В	С	D	Е	F	G	Н	1	J
1		1	2	3	4	5	6	7	8	9
2	1	2	3	4	5	6	7	8	9	10
3	2	3	4	5	6	7	8	9	10	11
4	3	4	5	6	7	8	9	10	11	12
5	4	5	6	7	8	9	10	11	12	13
6	5	6	7	8	9	10	11	12	13	14
7	6	7	8	9	10	11	12	13	14	15
8	7	8	9	10	11	12	13	14	15	16
9	8	9	10	11	12	13	14	15	16	17
10	9	10	11	12	13	14	15	16	17	18

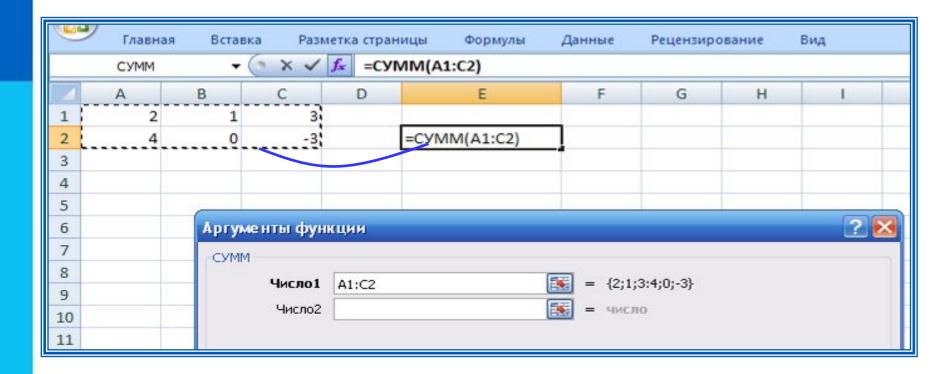
Внесём в ячейку В2 формулу =\$A2+В\$1 и скопируем её на весь диапазон В2:J10.

Должна получиться таблица сложения.

Относительные, абсолютные и смешанные ссылки

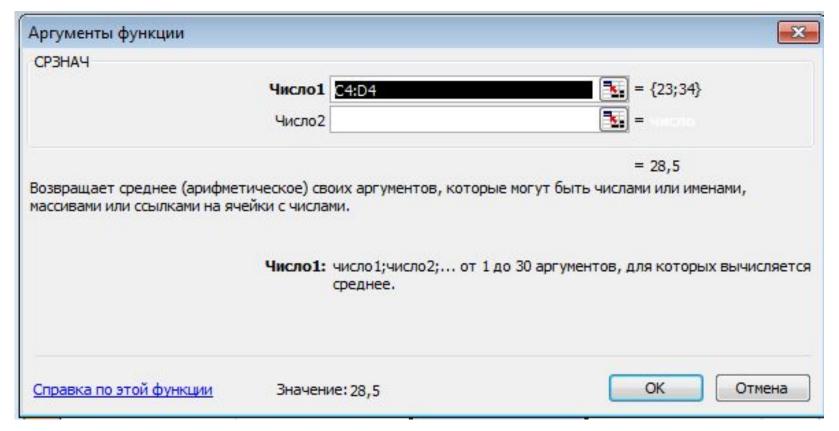
оносительная ссыпка: оносительна адросумый сноябы и мостночно адросумый сноябы и мостночно адросумый сноябы строка

Встроенные функции


Встроенные функции - заранее определённые формулы.

В электронных таблицах реализовано несколько сотен встроенных функций, подразделяющихся на: математические, статистические, логические, текстовые, финансовые и др.

Имя функции	Действие функции
СУММ / SUM	Суммирование аргументов
МИН / MIN	Определение наименьшего значения из списка аргументов
MAKC / MAX	Определение наибольшего значения из списка аргументов
СЧЁТ / COUNT	Подсчитывает количество чисел в аргументе


Правила ввода функций

- 1. Выделить ячейку, где будет введена функция
- 2. Вставка Функция (или fx на панели инструментов)
- 3. Выбрать функцию из списка
- 4. В окне Число ввести диапазон исходных данных
- **5.** Ок

Встроенные функции

Диалоговое окно позволяет упростить создание формул и свести к минимуму количество опечаток и синтаксических ошибок. При вводе функции в формулу диалоговое окно отображает имя функции, все её аргументы, описание функции и каждого из аргументов, текущий результат функции и всей формулы.

Встроенные функции

Пример 4. Правила судейства в международных соревнованиях по одному из видов спорта таковы:

- 1) выступление каждого спортсмена оценивают 6 судей;
- 2) максимальная и минимальная оценки каждого спортсмена отбрасываются;
- 3) в зачёт спортсмену идёт среднее арифметическое оставшихся оценок.

	A	В	С	D	E	F
1			Протокол	соревнований		
2		Спортсмен 1	Спортсмен 2	Спортсмен 3	Спортсмен 4	Спортсмен 5
3	Судья 1	5,9	9,2	7,8	9,1	6,9
4	Судья 2	6,3	9,7	8,0	9,3	7,8
5	Судья 3	5,4	8,9	8,2	8,8	8,1
6	Судья 4	6,6	9,9	7,9	9,2	7,8
7	Судья 5	5,8	9,2	6,4	9,9	8,2
8	Судья 6	6,2	9,5	8,9	9,4	8,9

Требуется подсчитать оценки всех участников соревнований и определить оценку победителя.

Для этого:

A	В	С	D	E	F
1	Пре	отокол соревн	юваний		
2	Спортсмен 1	Спортсмен 2	Спортсмен 3	Спортсмен 4	Спортсмен 5
₃ Судья 1	5,9	9,2	7,8	9,1	6,9
4 Судья 2	6,3	9,7	8,0	9,3	7,8
₅ Судья 3	5,4	8,9	8,2	8,8	8,1
в Судья 4	6,6	9,9	7,9	9,2	7,8
7 Судья 5	5,8	9,2	6,4	9,9	8,2
в Судья 6	6,2	9,5	8,9	9,4	8,9
9					
10 Максимальная оценка	6,6	9,9	8,9	9,9	8,9
11 Минимальная оценка	5,4	8,9	6,4	8,8	6,9
12 Итоговая оценка	6,1	9,4	8,0	9,3	8,0
13					Ĭ
14 Оценка победителя	9,4				
15					

Логические функции

Название логической операции	Логическая связка
Конъюнкция	«и»; «а»; «но»; «хотя»
Дизъюнкция	«или»
Инверсия	«не»; «неверно, что»

	Табли	ица истин	ности	
Α	В	A&B	AVB	Ā
0	0	0	0	1
0	1	0	1	
1	0	0	1	0
1	1	1	1	

Логические функции

Логические операции в электронных таблицах представлены как функции: сначала записывается имя логической операции, а затем в круглых скобках перечисляются логические операнды.

Например, логическое выражение, соответствующее двойному неравенству *0<A1<10*, запишется:

- на языке математической логики (0<A1) И (A1<10)
- на языке Паскаль (0<A1) and (A1<10)
- в электронных таблицах: *И(А1>0, А1<10)*

<u>Пример 5.</u> Вычислим в электронных таблицах значения логического выражения НЕ А И НЕ В при всех возможных значениях входящих в него логических переменных.

	Α	В	С	D	E
1		Таблица ис	тинности НЕ	AUHEB	SN SN
2	Α	В	HE A	HE B	НЕ А И НЕ В
3	ложь	ложь	=HE(A3)	=HE(B3)	=N(C3;D3)
4	ложь	ИСТИНА	=HE(A4)	=HE(B4)	= U (C4;D4)
5	ИСТИНА	ложь	=HE(A5)	=HE(B5)	=И(C5;D5)
6	ИСТИНА	ИСТИНА	=HE(A6)	=HE(B6)	= U (C6;D6)
7			72 2301		32 37
	N			25	

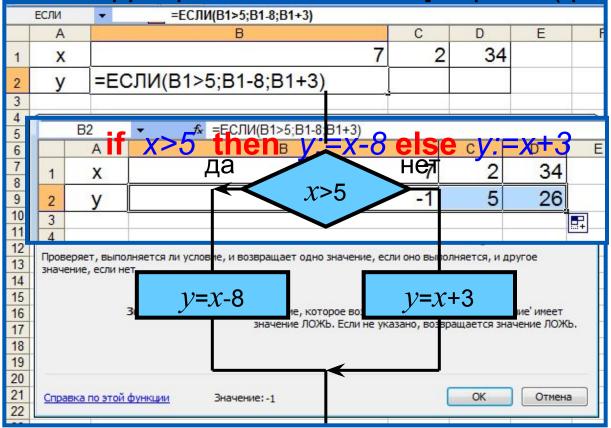
При решении этой задачи мы следовали известному нам алгоритму построения таблицы истинности для логического выражения.

Вычисления в диапазонах ячеек C3:C6, D3:D6, E3:E6 проводятся компьютером по заданным нами формулам.

Условная функция

Для проверки условий при выполнении расчётов в электронных таблицах реализована условная функция:

ЕСЛИ (<условие>; <значение 1>; <значение 2>)


Здесь < условие> - логическое выражение, принимающее значения **ИСТИНА** или **ЛОЖЬ**.

<значение 1> - значение функции, если логическое выражение истинно;

<значение 2> - значение функции, если логическое выражение ложно.

Логические функции

Пример. Для заданного значения x вычислить значение y по одной из формул: если x>5, то y=x-8, иначе y=x+3.

Пример 6. Задача о приёме в школьную баскетбольную команду: ученик может быть принят в эту команду, если его рост не менее 170 см.

Данные о претендентах (фамилия, рост) представлены в

электронной таблице.

Α	В	С		
Баскетбольная команда				
2 Ученик	Рост, см	Решение		
3 Васечкин	169	не принят		
4 Дроздов	182	принят		
5 Иванов	173	принят		
6 Куликов	158	не принят		
7 Петров	190	принят		
8 Сидоров	170	принят		
9	Принято:	4		
10	23 to 1 2 3 1 1 2 2			

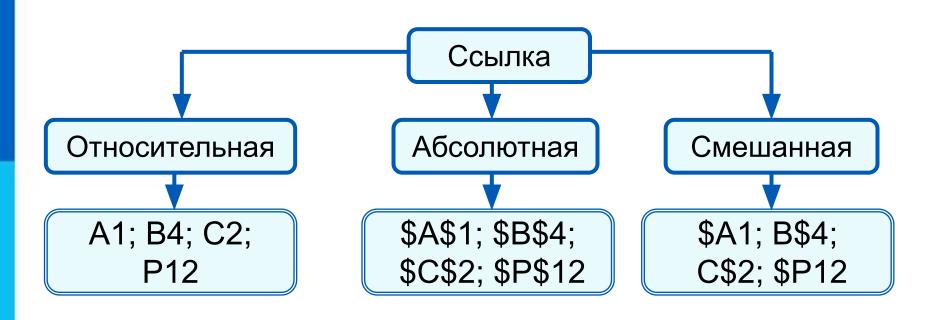
Использование условной функции в диапазоне ячеек С3: С8 позволяет вынести решение (принят/не принят) по каждому претенденту.

Функция СОUNTIF (СЧЁТЕСЛИ) позволяет подсчитать количество ячеек в диапазоне, удовлетворяющих заданному условию, в ячейке С9 подсчитывается число претендентов, прошедших отбор в команду.

Самое главное

Относительная ссылка фиксирует расположение ячейки с данными относительно ячейки, в которой записана формула. При изменении позиции ячейки, содержащей формулу, изменяется и ссылка.

Абсолютная ссылка всегда ссылается на ячейку, расположенную в определённом месте. При изменении позиции ячейки, содержащей формулу, абсолютная ссылка не изменяется.


Смешанная ссылка содержит либо абсолютно адресуемый столбец и относительно адресуемую строку, либо относительно адресуемый столбец и абсолютно адресуемую строку. При изменении позиции ячейки, содержащей формулу, относительная часть адреса изменяется, а абсолютная часть адреса не изменяется.

Функции - это заранее определённые и встроенные в электронные таблицы формулы.

Опорный конспект

Для организации вычислений в электронных таблицах используются формулы, которые могут включать в себя ссылки и функции.

Функции - это заранее определённые и встроенные в электронные таблицы формулы. Использование функций позволяет упростить формулы и сделать процесс вычислений более понятным.