Способы усиления железобетонных и каменных конструкций

Классификация методов восстановления и усиления конструктивных элементов зданий и сооружений

Элементы здания	Метод			
	Усиление	Восстановление	Замена	
Основания	Инъекции, дополнительное уплотнение (упрочнение)	ner, prop <u>o</u> aropologia neresek, broce nom	nje <u>c</u> io stialsi	
Фундаменты	Устройство обойм, разгрузочных конструкций, изменение конструктивной схемы	Инъекции, штукатурка, устройство гидроизоля- ции		
Стены, каркасы	Устройство обойм, шпонок, скоб, стяжек, разгрузочных поясов, изменение схемы	Инъекции, штукатурка		
Перекрытия	Увеличение сечения, устройство затяжек, шпренгелей, изменение схемы	Штукатурка Замен		
Крыши	Увеличение сечения элементов, изменение конструктивной схемы	Восстановление то же		
Лестницы	Увеличение сечения элементов лестницы	Инъекции, штукатурка	-//-	
Балконы	Увеличение сечения, изменение конструктивной схемы	То же	-//-	

Основные причины неудовлетворительного состояния фундаментов эксплуатируемых зданий

Ошибки	Характеристика несоответствия условиям эксплуатации и последствия
проектирова- ния	1. Не приняты во внимание все особенности грунтов оснований, включая локальные включения. Например, наличие насыпных грунтов, обладающих сверхнормативными осадками и менее стойких к воздействию протечек хозяйственных вод из неисправных систем инженерных коммуникаций. 2. Несоблюдение установленной глубины заложения (опасность пучения и неравномерных осадок при оттаивании). 3. Наличие двух рядом расположенных фундаментов, значительно отличающихся глубиной заложения.
производства работ	1. Нарушение структуры грунтов под фундаментами (например, расположение глинистых грунтов под подошвой фундамента, заложенного на недостаточную глубину). 2. Использование в технологическом процессе возведения фундаментов машин и механизмов с динамическим характером воздействия на массив грунта (опасным, например, в отношении водонасыщенных пылеватых грунтов). 3. Засыпка пазух котлованов водопроницаемыми грунтами. 4. Некачественное выполнение отмосток и придомовых замощений. 5. Выполнение ремонтно-строительных работ с нарушением технологии (скажем, устройство проемов в фундаментах без предварительной установки разгружающих балок или отрыв котлованов около существующих фундаментов на глубину, превышающую проектную).
эксплуатации здания	1. Вымывание, унос (суффозия) или разжижение грунтов при неисправности подземных инженерных систем (водоснабжения, канализации, теплотрасс). 2. Систематическое замачивание грунтов основания из-за неудовлетворительного состояния отмосток, систем удаления ливневых вод и пр. 3. Увеличение глубины подвальных помещений с нарушением нормируемого перепада отметок между подошвой фундамента и подготовкой под полы подвала (менее 500 мм). 4. Перераспределение нагрузок на фундаменты без учета их действительной несущей способности. 5. Устройство пристроек и надстроек без выполнения поверочных расчетов оснований и фундаментов.

Основные методы восстановления и усиления фундаментов эксплуатируемых зданий

Метод восстановления или усиления фундамента		Исходное состояние	
Наименование	Конструктивно-технологическое решение	фундамента	
Укрепление кладки фундамента без расшире- ния подошвы	Нагнетание (инъекции) цементного раствора в трещины и пустоты в теле фундамента	Снижение прочности кладки по всей толще фундамента, расслоение кладки	
	Штукатурка или торкретирование	Снижение прочности наружного слоя массива фундамента, незначительные трещины в нем	
	Устройство железобетонных или металлических обойм усиления (в том числе, и напрягаемых для столбов и простенков)	Недостаточная несущая способность, возможное увеличение нагрузки	
Увеличение опорной площади фундамента	Устройство по периметру фундамента приливов-башмаков из монолитного или сборного железобетона	Фундамент находится в удовлетворительном состоянии или предварительно выполнено укрепление цементацией	
Передача нагрузки на нижележащие слои грунта	Устройство выносных (набивных или винтовых) свай с включением в работу поперечных балок усиления	То же. Прочный грунт расположен глубоко от подошвы фундамента	
	Устройство опускных колодцев	То же. Фундамент находится в удовлетворительном состоянии.	
Углубление фундаментов	Подводка новых конструктивных элементов (столбов или сплошной плиты) с предварительным вывешиванием участков стен в местах выполнения работ	Углубление подвала. Устройство пристроек, встроек и подземных сооружений	

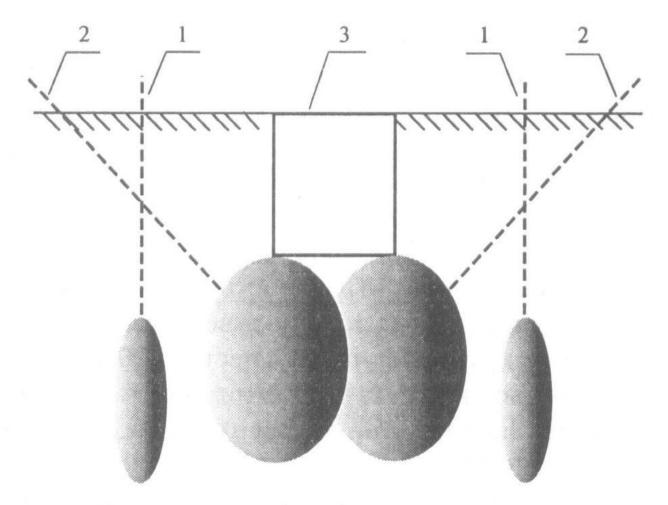


Рис. 6.1.1. Поэтапное укрепление грунта основания фундамента:

1 — положение инъекторов для формирования завес; 2 — основное положение инъекторов для усиления грунта под подошвой фундамента;

3 — фундамент сооружения

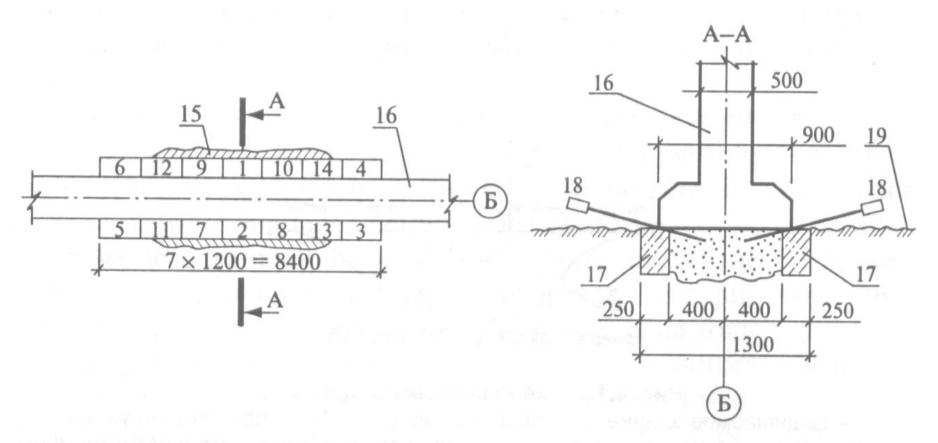
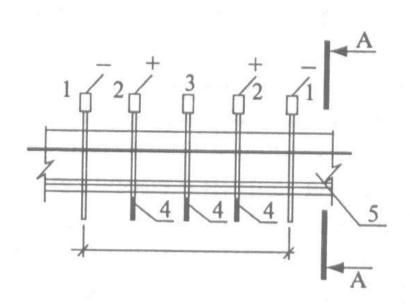



Рис. 6.1.3. Схема упрочнения основания здания:

1–14 — последовательность выемки грунта под фундаментом; 15 — зона просадки фундамента; 16 — фундамент здания; 17 — монолитные бетонные элементы, выполняющие роль завес; 18 — инъекторы для нагнетания цементного раствора; 19 — дно котлована

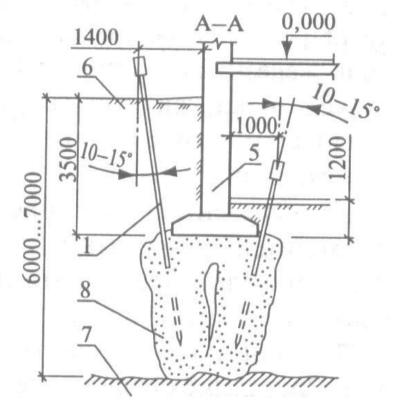


Рис. 6.1.4. Укрепление основания методом электросиликатизации: 1 — инъекторы-катоды; 2 — инъекторы-аноды; 3 — нейтральный инъектор; 4 — перфорированная часть инъектора; 5 — сборный ленточный фундамент; 6 — просадочная толща лессовидных суглинков; 7 — непросадочный грунт; 8 — массив грунта, закрепленный электросиликатизацией

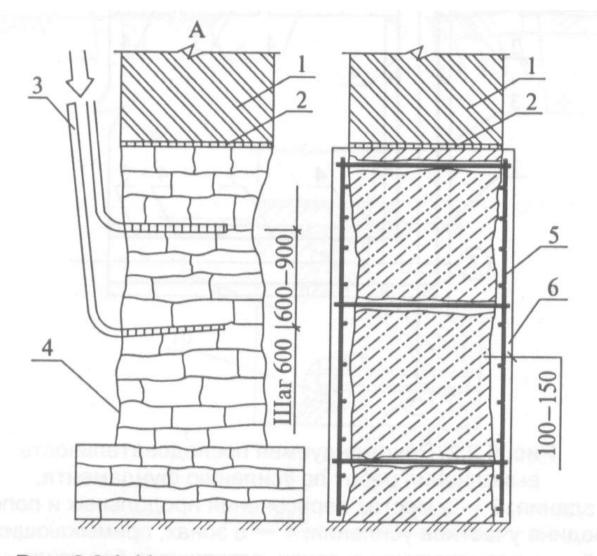


Рис. 6.2.1. Усиление фундамента и стен подвала: А — методом цементации; Б — устройством железобетонных обойм; 1 — стена здания; 2 — гидроизоляция; 3 — инъекторы для нагнетания цементного раствора; 4 — наплывы раствора на поверхности фундамента; 5 — арматурные каркасы; 6 — бетон омоноличивания

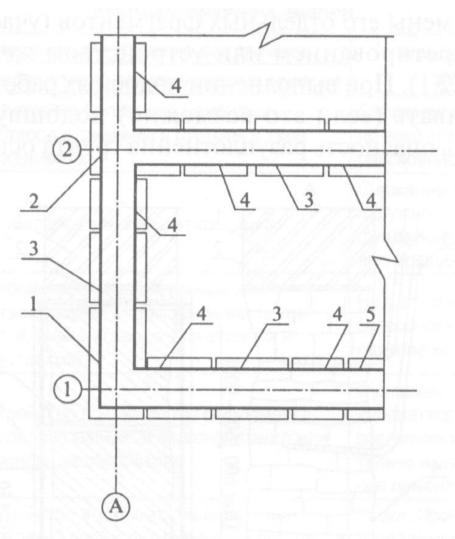
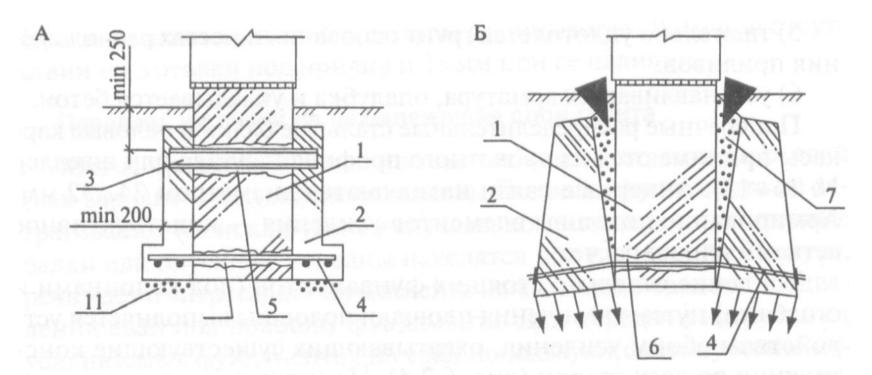



Рис. 6.2.2. Рекомендуемая последовательность выполнения работ по усилению фундамента:

1 — в углах здания; 2 — в местах пересечения продольных и поперечных стен;
 3 — в середине участков усиления; 4 — в зонах, примыкающих к зонам 3;
 5 — в промежуточных зонах, оставшихся без усиления

Рис. 6.2.3. Увеличение опорной площади ленточных фундаментов с помощью приливов:

А — из монолитного железобетона; Б — из сборных железобетонных элементов, обеспечивающих обжатие грунта основания; В — одностороннее расширение фундамента в стесненных условиях; 1 — существующий фундамент; 2 — устраиваемые приливы (башмаки, банкеты); 3 — распределительная стальная балка; 4 — анкерная связь (арматура); 5, 6 — отверстия для пропуска стальных элементов, заделываемые цементным раствором под давлением; 7 — клиновидные монолитные бетонные вставки, образующиеся в результате поворота сборных железобетонных приливов с помощью металлических клиньев или домкратов; 8 — каркас из профильного проката, передающий нагрузку на прилив; 9 — разрузочная балка; 10 — анкеры; 11 — щебеночное уплотнение грунта основания под прилив

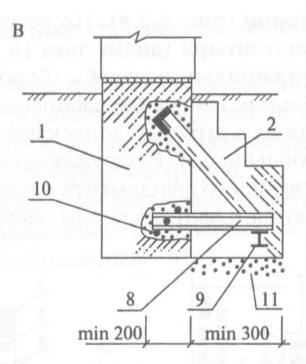


Рис. 6.2.3. Увеличение опорной площади ленточных фундаментов с помощью приливов:

А — из монолитного железобетона; Б — из сборных железобетонных элементов, обеспечивающих обжатие грунта основания; В — одностороннее расширение фундамента в стесненных условиях; 1 — существующий фундамент; 2 — устраиваемые приливы (башмаки, банкеты); 3 — распределительная стальная балка; 4 — анкерная связь (арматура); 5, 6 — отверстия для пропуска стальных элементов, заделываемые цементным раствором под давлением; 7 — клиновидные монолитные бетонные вставки, образующиеся в результате поворота сборных железобетонных приливов с помощью металлических клиньев или домкратов; 8 — каркас из профильного проката, передающий нагрузку на прилив; 9 — разрузочная балка; 10 — анкеры; 11 — щебеночное уплотнение

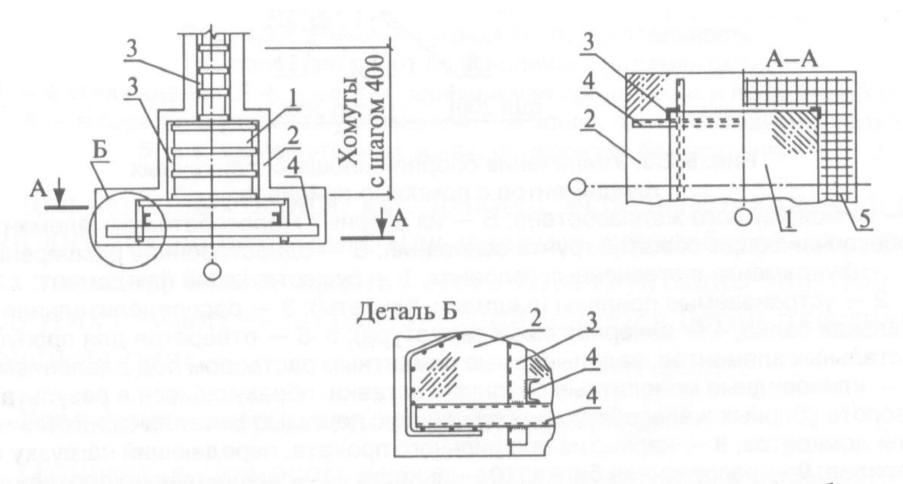


Рис. 6.2.4. Усиление отдельно стоящих опор под колонны и столбы: 1 — существующий фундамент; 2 — железобетонная обойма усиления; 3 — вертикальные жесткие элементы арматурного каркаса; 4 — стальные балки, передающие усилие на монолитное усиление опоры; 5 — армирование уширения фундамента

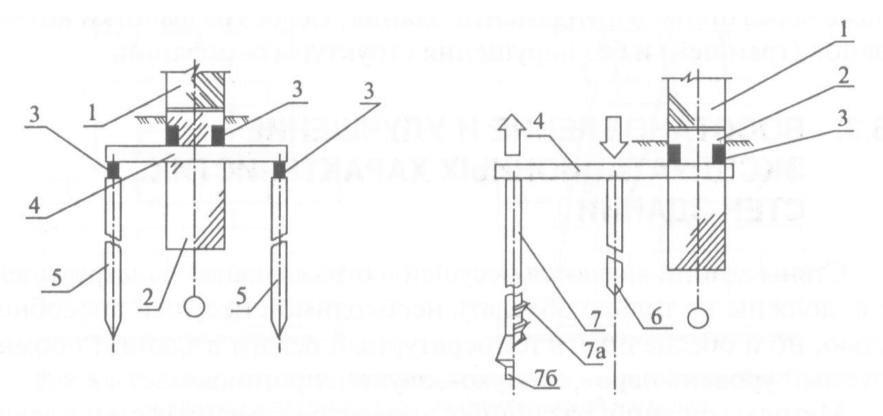


Рис. 6.2.5. Схема усиления фундаментов передачей нагрузки на сваи: 1 — стена здания; 2 — фундамент; 3 — рандбалки (железобетонные или стальные омоноличенные; 4 — поперечные балки (железобетонные или стальные омоноличенные); 5, 6 — сваи, работающие на вдавливание; 7 — сваи (винтовые 7а или буронабивные с уширенной пятой 7б), работающие на выдергивание

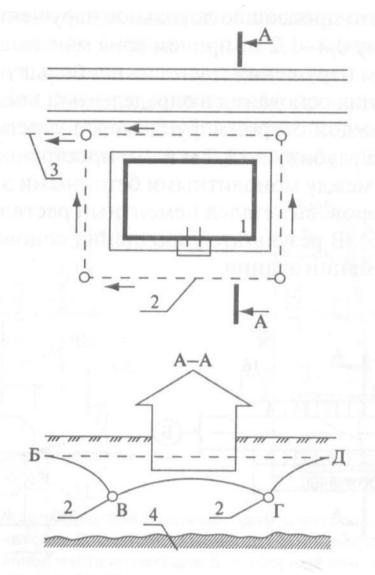
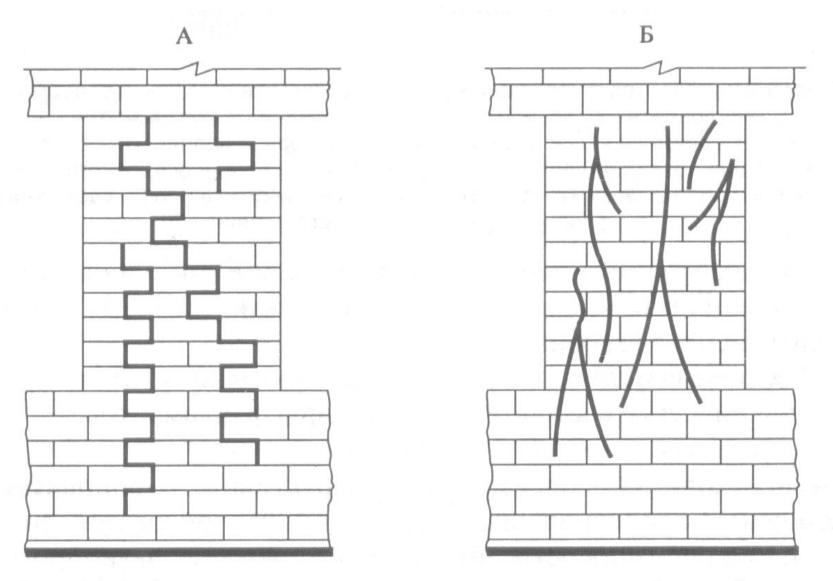



Рис. 6.1.2. Схема кольцевого дренажа:

1 — защищаемое здание; 2 — дрены-собиратели; 3 — сброс вод по уклону местности; 4 — водоупорный грунт; БД — уровень грунтовых вод в естественном состоянии; БВГД — уровень грунтовых вод после устройства дренажа

Рис. 6.3.1. Характер трещин при несоответствии несущей способности кирпичной кладки на сжатие фактической нагрузке:

А — при удовлетворительном состоянии кладки (физический износ менее 40%);
 Б — при неудовлетворительном состоянии кладки (износ более 40%)

Сквозная почти вертикальная трещина относительно постоянной ширины появляется при резко отличающихся величинах осадок двух частей здания (рис. 6.3.2, В).

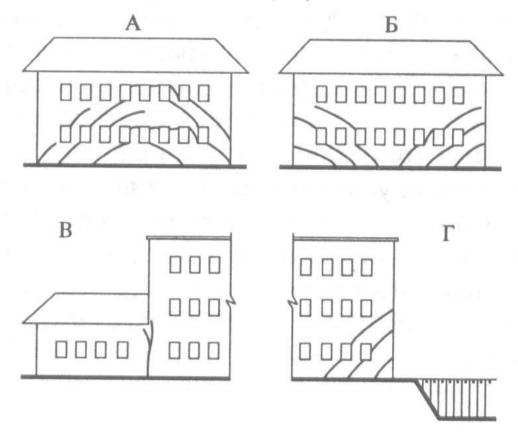


Рис. 6.3.2. Характер трещин в наружных несущих стенах здания вследствие неудовлетворительного состояния оснований и фундаментов:

А — осадка средней части здания; Б — осадка торцов здания; В — различная величина просадки двух частей здания при отсутствии осадочного шва; Г — обширная выемка грунта или новое строительство в непосредственной близости от существующего здания

В период эксплуатации кирпичных зданий часто происходит разрушение облицовочного слоя кирпича в наиболее нагруженных простенках нижних этажей. Ремонт может заключаться в заделке трещин инъецированием или заменой части разрушившихся кирпичей (рис. 6.3.3).

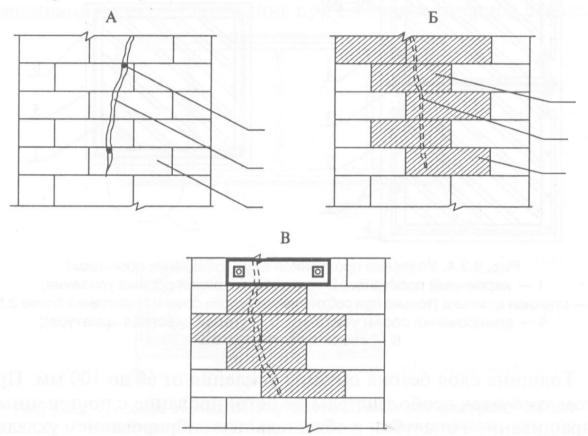
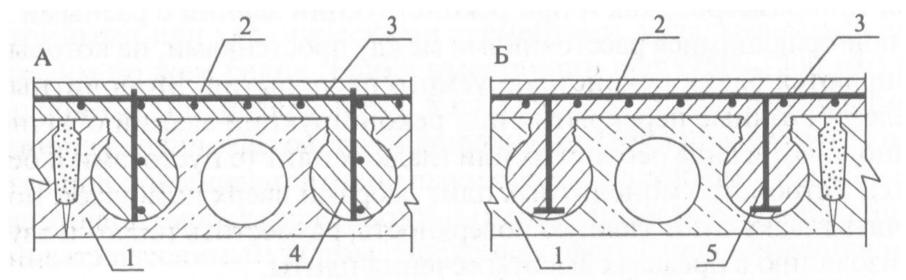
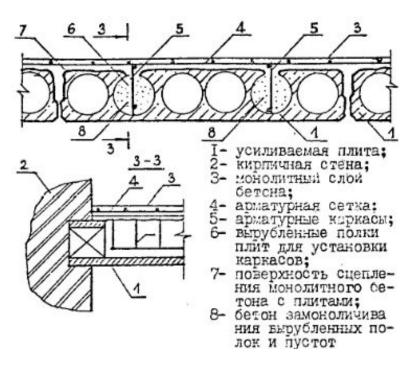
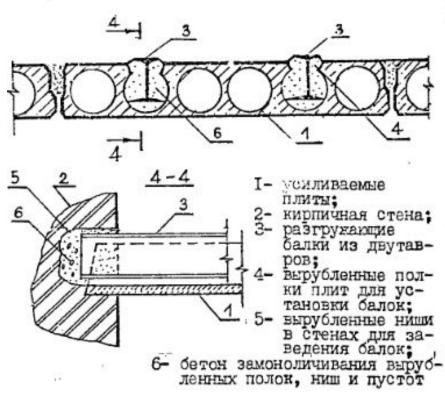


Рис. 6.3.3. Усиление кирпичных простенков с трещинами: А — инъецирование трещин с раскрытием до 10 мм цементным раствором; Б — вставкой кирпичных «замков»; В — вставкой «замков» с металлическими «якорями»; 1 — простенок; 2 — трещина; 3 — инъекторы для цементации трещин; 4 — кирпичные «замки» толщиной ¹/₂ кирпича, выкладываемые участками с обеих сторон простенка; 5 — «якоря» из полосовой стали, стянутые болтами

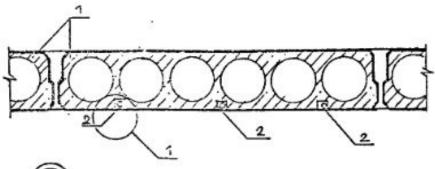
Усиление многопустотных плит перекрытий

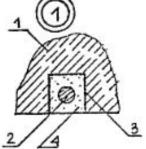




Рис. 6.4.4. Усиление сборной многопустотной плиты перекрытия:
А— с применением гибкого армирования плиты усиления;
Б— с применением жестких армирующих элементов усиления;
— существующая плита; 2— бетон усиления; 3— горизонтальное армировани усиления; 4— вертикальные каркасы усиления; 5— прокатные двутавровые балки в качестве арматуры усиления

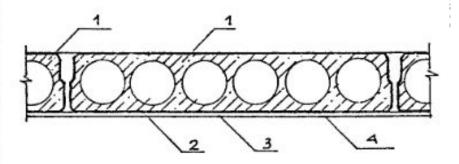
Усиление многопустотных плит перекрытий

НАРАШИВАНИЕ ПЛИТ СВЕРХУ ПРИ НЕДОСТАТОЧНОМ СЦЕПЛЕНИИ ПОВЕРХНОСТЕЙ

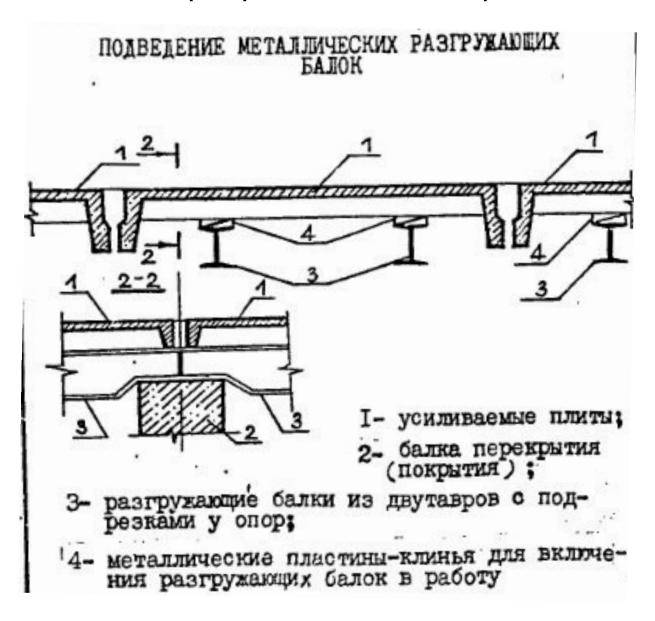



ПОЛВЕЛЕНИЕ МЕТАЛЛИЧЕСКИХ РАЗГРУЖАЮЩИХ БАЛОК СВЕРХУ

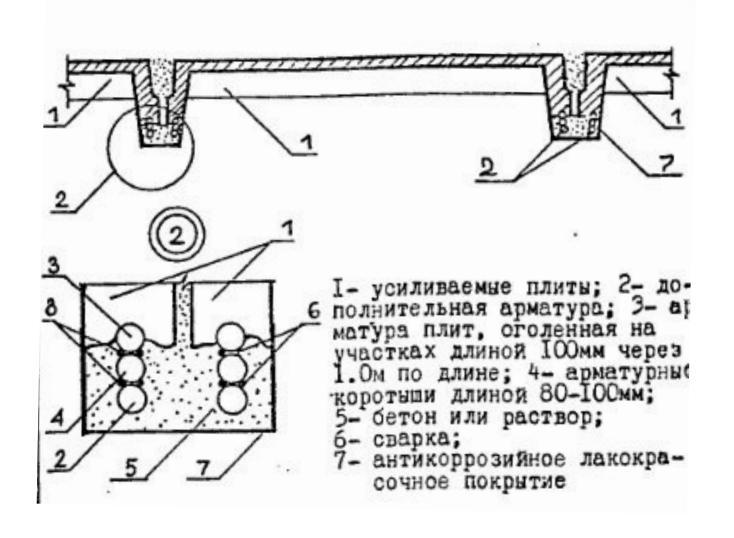
Усиление многопустотных плит перекрытий


УСТАНОВКА ДОПОЛНИТЕЛЬНОЙ АРМАТУРЫ НА ПОЛЕМЕРРАСТВОРЕ

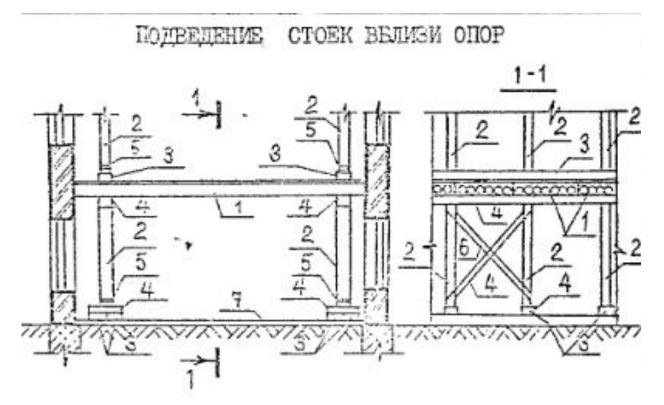
- Усиливаемые плиты;
- 2- дополнительная арматура;
- 3- пазы в бетоне, вырезанные фрезой;
- 4- защитно-конструкционный полимерраствор


НАКЛЕЙКА СТЕКЛОТКАНИ ИЛИ ЛИСТОВОГО МЕТАЛЛА НА ПОЛИМЕРРАСТВОРЕ

I- усиливаемые плиты;2- очищенная и обезыпренная поверхность

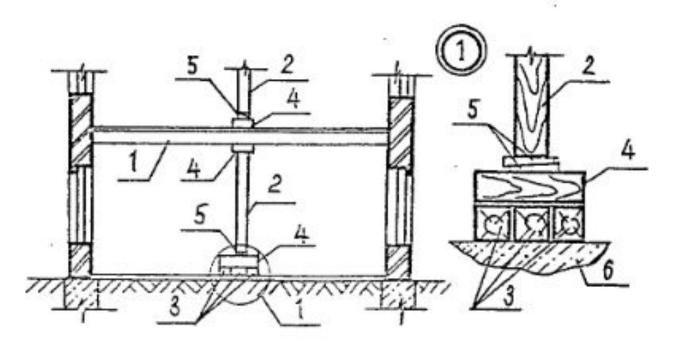

3- защитноконструкционный полимерраствор; 4- листовой металл (очищенный от окалины и ржавчины и обезжиренный ацетоном) или несколько слоев стеклоткани марок СТ-II, СТ-IЗ или стеклосетки марок РС-I, РС-2 и др. (очищенные от замасливания)

Усиление ребристых плит покрытия

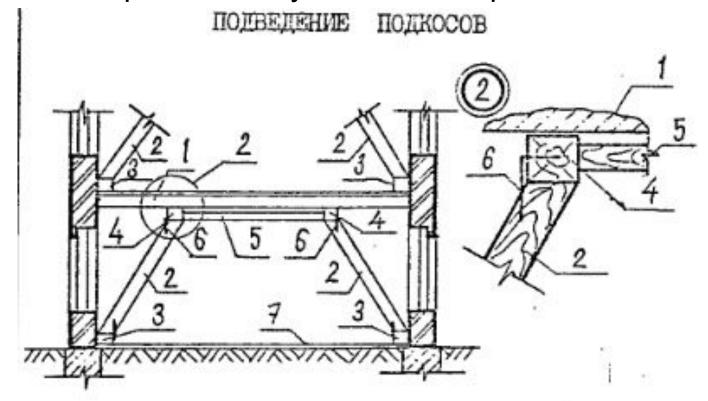


Усиление ребристых плит покрытия

УСТАНОВКА ДОПОЛНИТЕЛЬНОЙ РАБОЧЕИ АРМАТУРЫ


Способы временного усиления аварийных плит

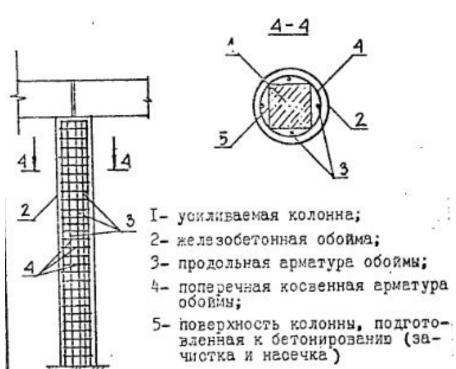
1 - усиливаение железобетскиме плити перекритил: 2 - разгружающие неталинувские или деревяние отойки; 3 - лежин из бруса; ч - подинации из бруса; 5- илиний для вилючения стоек; 6 - связи из досок; 7 - пол здания


Способы временного усиления аварийных плит

подведение стоек в середине пролета

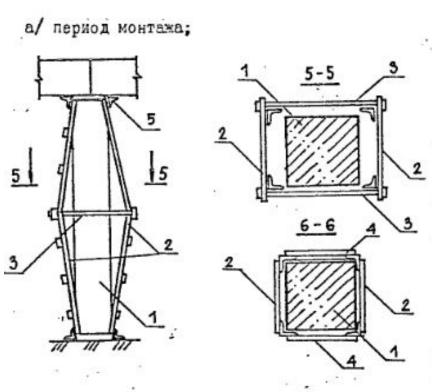
I - усиливаемые железобетонные плиты перекрытия;
 2 - разгружающие деревянные или металлические стойки;
 3 - лежни из бруса;
 4 - подкладки из бруса;
 5 - клинья для включения стоек в работу;
 6 - пол здания

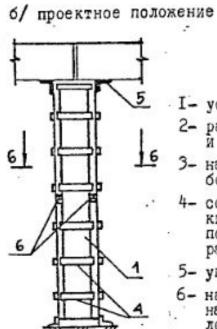
Способы временного усиления аварийных плит


I - усиливаемые железобетонные плити перекрития;
 2 - разгружающие подкоси из бруса;
 3 - лежни из бруса;
 4 - опорный брус;
 5 - распорки из бруса одновременно служат для включения подкосов в работу;
 6 - схватки;
 7 - пол здания

Усиление железобетонных колонн

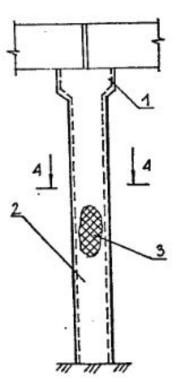
устройство железоветонной обоймы:

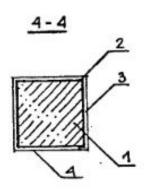

УСТРОЙСТВО ЖЕЛЕЗОБЕТОННОЙ ОБОЙМЫ С КОСВЕННЫМ АРМИРОВАНИЕМ



Усиление железобетонных колонн

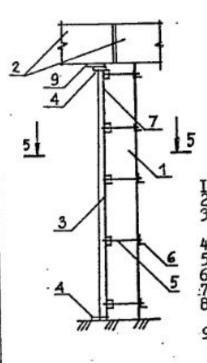
Установка распорок

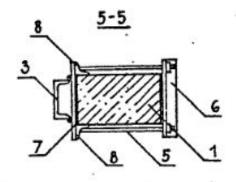




- 1
 - I- усиливаемая колонна;
 - 2- распорки из уголков и планок;
 - 3- натяжные монтажные болты:
 - 4- соединительные планки, призариваемые после установки распорок;
 - 5- упорные элементы;
 - 6- накладки, назаренные на места выреза полок уголков распорок

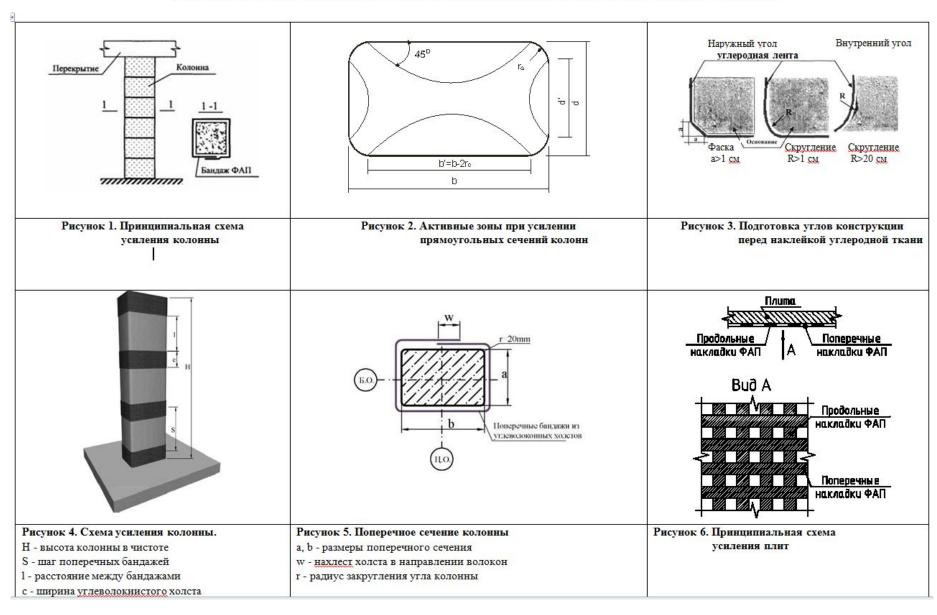
Усиление железобетонных колонн


УСТРОЙСТВО ОБОЙМЫ ИЗ ПОВЕРХНОСТНООКЛЕЕЧНОГО СТЕКЛОПЛАСТИКА



- 1- усиливаемая колонна;2- поверхность колонны,подготовленная к
 - оклейке;
- 3- стеклоткань марок СТ-II, СТ-IЗ или стеклосетка марок РС2-I... РС2-3 и др., очищенные от замасливателя; 4- впоксидный клей

УСТАНОВКА ПРИСТАВНЫХ РАЗГРУЖАЮЩИХ СТОЕК



- Усиливаемая колонна;
 балки покрытия;
 приставная разгружающая стойка из швеллера;
- 4- опорные пластины; 5- стяжные болты;

- 6- уголок-шайба; 7- лист стяжного хомута; 8- упорный уголок стяжного XOMYTA;
- 9- пластины-клинья для включения разгружающих стоек в работу

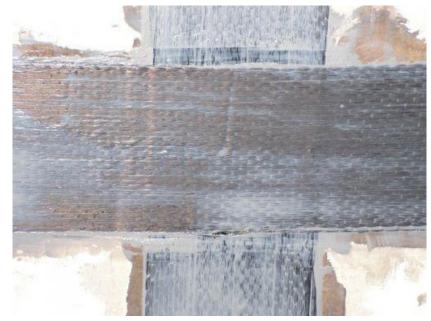
УСИЛЕНИЕ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИИ УГЛЕПЛАСТИКОМ

Углеволокно

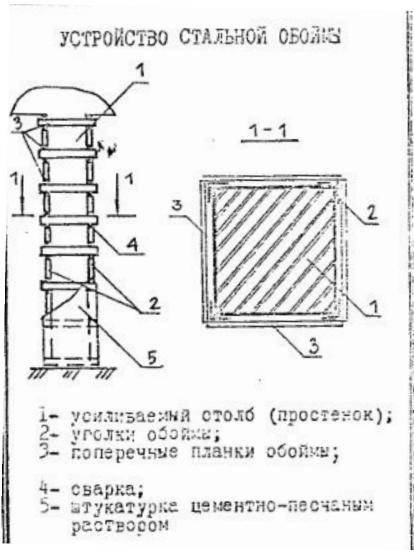
Двухкомпонентный эпоксиполиуретановый клей

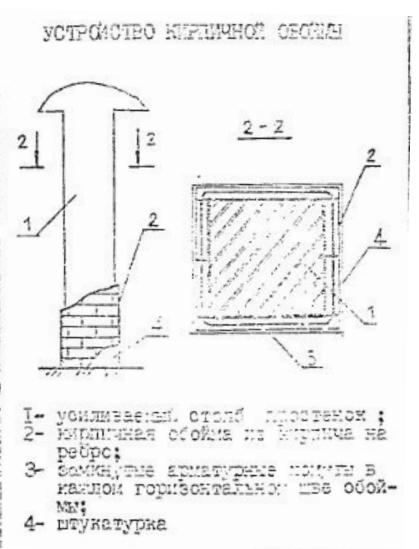
Усиленные элементы

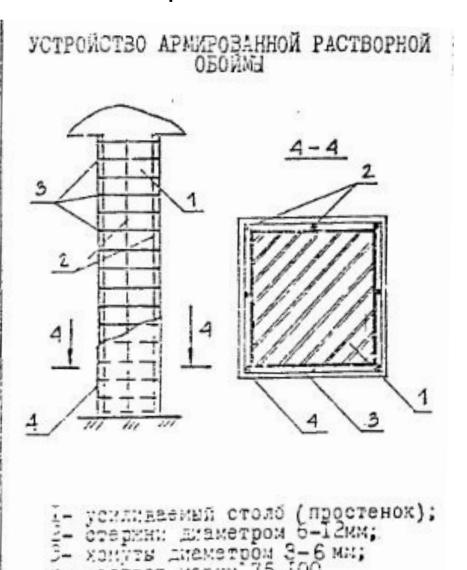
Усиленные элементы



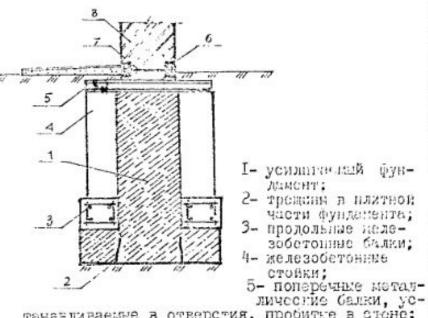
Усиленные элементы






Усиление кирпичных столбов и простенков

Усиление кирпичных столбов и простенков

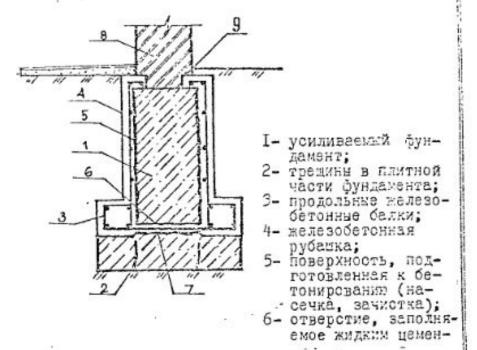

устрейство келезоветонной обоймы

Усиление фундаментов

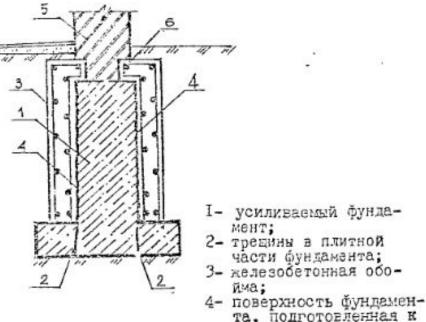
FDYHTA

УСТРОЙСТВО ПРОДОЛЬНИХ БАЛОК СО СТОИКАМИ НА СТУПЕНИХ

танавливаемые в отверстия, пробитые в стоне; 6- продольные металлические балки, устанавливаемые в штрабах;


7- стяхние больн;

3- кирпичная стена



Усиление фундаментов

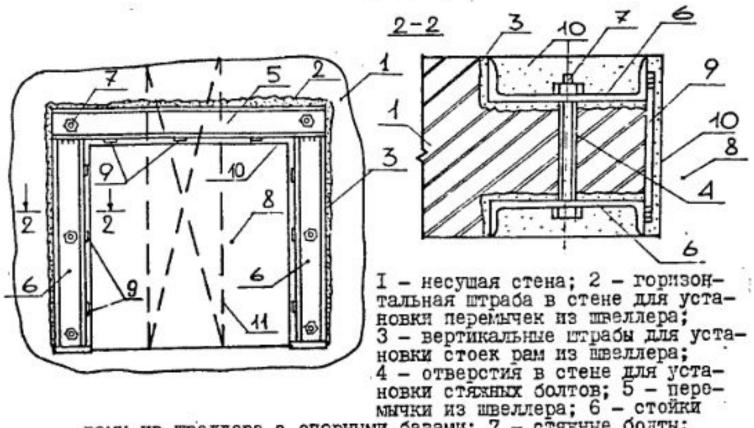
COEMECTHO C FELESCRETCHHON PYEARKON

тно-песчаным раствором; 7- анкер из арматурной стали; 8- кирпичная стена; 9- штраба в YOMEHME HAWTHON VACTO YCTPONCTBOM

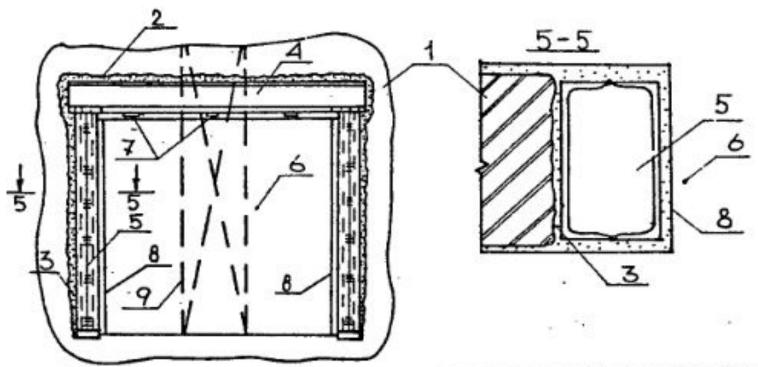
5- кирпичная стена;

та, подготовленная к обетонированию (на-сечка, зачистка, про

мевка); 6- штраба в стене


ПРОЕМЫ В САМОНЕСУЩИХ И НЕСУЩИХ СТЕНАХ С ПОДВЕДЕНИЕМ ПЕРЕМЫЧЕК ИЗ ШВЕЛЛЕРА

I - самонесущая или несущая стела; 2 - штрабн в стене для установки перемичек из швеллера; 3 - отверстия в стене для установки стяжных болтов; 4 - перемички из швеллера;
 5 - стяжные болты; 6 - проем в стене, устраиваемый после подведения перемичек; 7 - соединительные планки на сварке;
 8 - штукатурка по сетке; 9 - временные разгружающие стойки под перекрытие над устраиваемым проемом для несущих стен


Определение прочности материалов каменной кладки

ПРОЕМЫ В НЕСУШИХ СТЕНАХ С ПОДВЕДЕНИЕМ РАМ ИЗ ШВЕЛЛЕРА

рамы из швеллера с опорными базами; 7 - стяжные болты; 8 - проем в стене, устраиваемый после подведения рам; 9 - соединительные планки на сварке; 10 - штукатурка по сетке; II - временные разгружающие стойки под перекрытие над устраиваемым проемом.

ПРОЕМН В НЕСУШИХ СТЕНАХ С ПОДВЕДЕНИЕМ РАМ ИЗ ШВЕЛЛЕРА

I — несущая стена; 2 — горизонтальная штраба в стене для установки перемычек из швеллера; 3 — проем в стене для установки стоек из швеллера, сваренных в коробку (ширина проема на 50 мм больше ширины стоек); 4 — перемычки из швеллера, приваренные к стойкам; 5 — стойки рамы из швеллеров, сваренных в коробку, с опорными базами; 6 — проем в стене, устраиваемый после подведения рам; 7 — соединительные планки на сварке; 8 — штукатурка по сетке; 9 — временные разгружающие стойки под перекрытие над устраиваемым проемом.

Усиление конструкций

