Проверка статистических гипотез.

Критерий согласия Пирсона (хи-квадрат)

Статистической гипотезой называется любое предположение о виде или параметрах неизвестного закона распределения.

Проверяемую гипотезу называют *нулевой (основной)*, обозначают её H_0 .

Конкурирующей (альтернативной) называют гипотезу, которая противоречит нулевой, обозначают её H_1 .

Определение. Правило, по которому принимается решение принять или отклонить гипотезу H_0 , называется критерием K.

Γ ипотеза H_0	Принимается	Отвергается		
Верна	Правильное решение	Ошибка 1-го рода		
Неверна	Ошибка 2-го рода	Правильное решение		

Обозначим через — вероятность допустить ошибку 1-го рода, через β — вероятность ошибки 2-го рода.

Вероятность α допустить ошибку 1-го рода, то есть отвергнуть верную гипотезу H_0 , называют *уровнем значимости*. Обычно $\alpha = 0.05$, $\alpha = 0.01$

Определение. Величину $(1-\beta)$, которая равна вероятности отвергнуть нулевую гипотезу, если она верна, называют *мощностью критерия*.

Критерии, с помощью которых проверяется гипотеза о теоретическом законе распределения, называются *критериями согласия*.

 H_0 : генеральная совокупность имеет некоторое

определённое распределение **Параметрические критерии** тестируют гипотезы

- о параметрах некоторого распределения: 1. Генеральная совокупность имеет биномиальное распределение с параметрами m=10 и p=0.4.
- **2.** Генеральная совокупность распределена нормально с математическим ожиданием, равным 5 и дисперсией, равной 4.

Пять шагов проверки

- ГИПОТЕЗЫ

 1. Сформулировать нулевую H_0 и альтернативную H_1

 гипотезы.
- 2. Выбрать статистику критерия T(X) и уяснить её закон распределения.
- 3. Задать уровень значимости критерия. По таблицам найти критические точки и указать критическую область.
- 4. Подсчитать наблюдаемое значение статистики критерия и проверить условие его попадания в критическую область.
- 5. Сделать вывод о принятии нулевой или альтернативной гипотезы.

Критерий согласия Пирсона хи-квадрат

(для проверки непараметрических гипотез)

Пусть эмпирическое распределение имеет вид $x_i = x_1 = x_2 = \dots = x_N$

Схема применения критерия Пирсона при заданном уровне значимости α :

- 1. Выдвинуть гипотезу H_0 о том, что случайная величина распределена по нормальному закону.
- 2. По таблице критических точек распределения χ^2 (приложение 4), по заданному уровню значимости α и числу степеней свободы k=n-3 найти критическую точку $\chi^2_{_{\rm KP}}(\alpha;k)$.
- 3. Рассчитать наблюдаемое значение критерия $Z_{\text{набл}} = \sum_{i=1}^N \frac{(n_i n_i')^2}{n_i'}, \text{предварительно вычислив теоретические частоты}$ $n_i' = \frac{nh}{\tilde{D}[x]} \varphi(x_i) \, .$
- 4. Сравнить эмпирические и теоретические частоты с помощью критерия Пирсона:
 - если $\chi^2_{\text{набл}} < \chi^2_{\text{кp}}$, то нет оснований отвергать гипотезу о нормальном распределении генеральной совокупности, поскольку эмпирические и теоретические частоты различаются незначимо (случайно);
 - если $\chi^2_{\text{набл}} > \chi^2_{\text{кр}}$ гипотезу отвергают, т.к. эмпирические и теоретические частоты различаются значимо.

Условие. Используя критерии χ^2 – Пирсона, на уровне значимости α =0,05 проверить гипотезу о том, что случайная величина X, равная количеству вызовов скорой помощи в день, распределена по нормальному закону:

X _i , число вызовов в день	5-10	10-15	15-20	20-25	25-30	всего
<i>n</i> _i , кол-во дней	6	13	18	10	3	50

- Пусть гипотеза H₀ состоит в том, что случайная величина X, равная количеству вызовов скорой помощи в день, распределена по нормальному закону.
- 2. По таблице критических точек распределения χ^2 (приложение 4): $\chi^2_{nn}(0.05;2) = 6 \ (\alpha = 0.05, k = n-3=5-3=2).$

IIриложение 4 Критические точки распределения χ^2

Число степеней свободы к	Уровень значимости ос								
	0,01	0,025	0,05	0,95	0,975	0,99			
1	6,6	5,0	3,8	0,0039	0,00098	0,00016			
2	9,2	7,4	6,0	0,103	0,051	0,020			
3	11,3	9,4	7,8	0,352	0,216	0,115			
4	13,3	11,1	9,5	0,711	0,484	0,297			
5	15,1	12,8	11,1	1,15	0,831	0,554			
6	16,8	14,4	12,6	1,64	1,24	0,872			
7	18,5	16,0	14,1	2,17	1,69	1,24			
7 8	20,1	17,5	15,5	2,73	2,18	1,65			
9	21,7	19,0	16,9	3,33	2,70	2,09			
10	23,2	20,5	18,3	3,94	3,25	2,56			
11	24,7	21,9	19,7	4,57	3,82	3,05			
12	26,2	23,3	21,0	5,23	4,40	3,57			
13	27,7	24,7	22,4	5,89	5,01	4,11			

3. Наблюдаемое значение критерия:

 Вычислим выборочные среднее, дисперсию и среднее квадратическое отклонение по формулам:

$$\overline{x} = \frac{\sum x_i^* n_i}{n}, \ D = \frac{\sum (x_i^* - \overline{x})^2 n_i}{n}, \ \sigma = \sqrt{D}.$$

Расчётная таблица 3

x_i^*	n_i	$x_i^* n_i$	$x_i^* - \overline{x}$	$(x_i^*-\overline{x})^2$	$(x_i^* - \overline{x})^2 n_i$
7,5	6	45	-9,1	82,81	496,86
12,5	13	162,5	-4,1	16,81	218,53
17,5	18	315	0,9	0,81	14,58
22,5	10	225	5,9	34,81	348,1
27,5	3	82,5	10,9	118,81	356,43
Σ		830			1434,5

Выборочное среднее значение:

$$\overline{x} = \frac{830}{50} - 16,6$$

Выборочная дисперсия:

$$D = \frac{1434,5}{50} = 28,69$$

Выборочное среднее квадратическое отклонение:

$$\sigma = \sqrt{28,69} \approx 5,36$$

• Вычислим теоретические частоты по формуле $n_i' = n \cdot p_i$, где вероятности $p_i = P(y_i < Y < y_{i+1}) = \Phi(y_{i+1}) - \Phi(y_i)$ ($\Phi(y)$ - функция Лапласа), а $Y = \frac{X - \overline{x}^*}{\sqrt{\tilde{D}[x^*]}}$.

Расчётная таблица 4

i	X_i	X_{i+1}	$X_i - \overline{X}$	$x_{i+1} - \overline{x}$	y_i	y_{i+1}	$\Phi(y_i)$	$\Phi(y_{i+1})$	p_i	n_i'
1	5	10	-11,6	-6,6	-∞	-1,23	-0,5	-0,3907	0,1093	5,465
2	10	15	-6,6	-1,6	-1,23	-0,3	-0,3907	-0,1179	0,2728	13,64
3	15	20	-1,6	3,4	-0,3	0,63	-0,1179	0,2357	0,3536	17,68
4	20	25	3,4	8,4	0,63	1,57	0,2357	0,4418	0,2061	10,305
5	25	30	8,4	13,4	1,57	+∞	0,4418	0,5	0,0582	2,91

• Вычислим наблюдаемое значение критерия по формуле: $Z_{\text{набл}} = \sum_{i=1}^{N} \frac{(n_i - n_i')^2}{n_i'}, \text{ где } n_i - \text{ эмпирические частоты, } n_i' - n_i' -$

теоретические частоты.

Расчётная таблица 5

	23	16	9 8	1	I de letitor idomina
i	n _i	n_i'	n_i - n'_i	$(n_i - n_i')^2$	$\frac{\left(n_i - n_i'\right)^2}{n_i'}$
1	6	5,465	0,535	0,286	0,052
2	13	13,64	-0,64	0,4096	0,03
3	18	17,68	0,32	0,1024	0,006
4	10	10,305	-0,305	0,093	0,009
5	3	2,91	0,09	0,0081	0,003
Σ	50				$Z_{\text{набл}} = \sum_{i=1}^{N} \frac{(n_i - n_i')^2}{n_i'}, =0,1$

4. Сравнить эмпирические и теоретические частоты с помощью критерия Пирсона: т.к. $\chi^2_{\text{набл}} < \chi^2_{\text{кр}} \; (\chi^2_{\text{кр}} = 6 \,, \chi^2_{\text{набл}} = 0,1)$, то нет оснований отвергать гипотезу о нормальном распределении генеральной совокупности, поскольку эмпирические и теоретические частоты различаются незначимо (случайно).

Вывод: С вероятностью 0.95 $(1-\alpha)$ можно утверждать, что случайная величина X, равная количеству вызовов скорой помощи в день, распределена по нормальному закону.