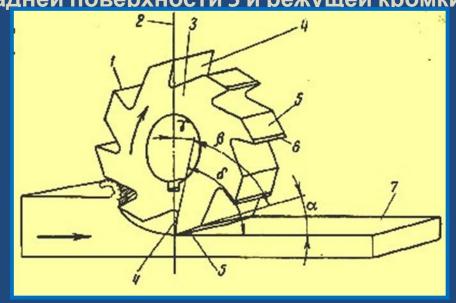

# Основные сведения о фрезеровании.



Основным режущим инструментом для работы на фрезерных станках является фреза. Фреза — многолезвийный инструмент. Каждый её зуб представляет собой резец, снимающий стружку, имеющую форму запятой (рис 1). В зависимости от требуемой формы поверхности детали применяют различные фрезы(рис.2). В процессе резания одновременно участвует один или несколько зубьев фрезы, остальные зубья за время холостого хода успевают охладиться. Процесс резания при


MNASANARAUMA ATRINGATED AT HARRANLIBUATA NASAUMO RAM





## Элементы зуба фрезы и его геометрия

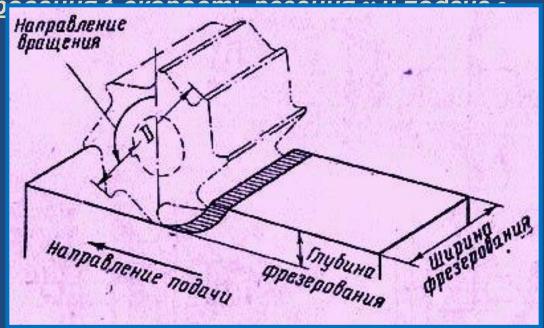
Каждый зуб фрезы, как и любой резец, имеет форму клина и состоит из следующих элементов: передней поверхности 4 – поверхность по которой сходит стружка, задней поверхности 5 и режущей кромки 1.



Передняя поверхность 4 зуба фрезы 3 образует с вертикальной плоскостью 2 передний угол γ; задняя поверхность 5 зуба образует с обработанной поверхностью 7 заготовки задний угол α; передняя поверхность 4 зуба образует с задней поверхностью 5 зуба угол заострения β. Угол резания δ образован передней поверхностью 4 зуба с обработанной поверхностью 7 заготовки.

Режущая кромка 1 образована пересечением передней и задней поверхностей. Непосредственно к режущей кромке зуба фрезы примыкает

## Материал фрез


Для изготовления фрез применяются различные материалы. Фрезы, работающие при скорости резания 10...15 м/мин, изготовляются из углеродистых инструментальных сталей У7 – У13, работающие при скорости резания 20..25 м/мин – из легированных сталей ХГ, ХВ5, 9ХС, ХВГ. Для фрез, работающих при более высоких скоростях резания, применяются быстрорежущие стали Р6М5, Р6М3, Р9, Р12, р18. Фрезы из быстрорежущей стали Р18 и Р9 допускают большие скорости резания и большие подачи, чем фрезы из углеродистой и легированной сталей. Металлокерамические твердые сплавы для обработки резанием металлов разделяются на *титановольфрамовые* (типа ТК -Т14К8,Т15К6, T5 К10) и *вольфрамовые* (типа ВК – ВК2, ВК3М, ВК10М, ВК6, ВК8 ) сплавы. Для оснащения фрез твердые сплавы выпускаются в виде пластинок. Такие пластинки припаивают либо к державкам из конструкционной стали (в этом случае они образуют вставные зубья), либо к корпусу фрезы. Высокая твердость и износостойкость твердых сплавов, а также их способность сохранять режущие свойства при высоких температурах обеспечивают возможность еще более производительной обработки по сравнению с быстрорежущей сталью

## Режим резания при фрезеровании

В процессе фрезерования зубья фрезы при её вращении последовательно один за другим врезаются в надвигающуюся заготовку и снимают стружку, осуществляя резание.

Элементами резания при фрезеровании являются <u>ширина фрезерования</u> *В,* т.е. ширина поверхности, обрабатываемой за один проход заготовки,

<u>глубина фрезер</u>



Совокупность всех перечисленных выше элементов (скорость резания, подача, глубина и ширина фрезерования) в правильном взаимном сочетании составляет режим резания при фрезеровании, или,

## Глубина фрезерования

Глубиной резания при фрезеровании, или <u>глубиной фрезерования t,</u> или часто глубиной срезаемого слоя, называют толщину (в миллиметрах) слоя металла, снимаемого с поверхности заготовки фрезой за один проход. Глубина фрезерования измеряется как расстояние между обрабатываемой и обработанной поверхностями.

Весь слой металла, который необходимо удалить при фрезеровании, называется припуском на обработку. Глубина фрезерования зависит от припуска на обработку и мощности станка. Если припуск велик, обработку производят в несколько переходов. При этом последний переход производят с небольшой глубиной резания для получения более чистой поверхности обработки. Такой переход называют чистовым фрезерованием в отличие от чернового, или предварительного фрезерования, которое

е на

прс фрезы имлиндрические имлиндрические в в отличие от чернового, или предварительного фрезы дисковые

### <u>Подача</u>

Движение подачи при фрезеровании выполняется вручную. Оно может быть осуществлено перемещением стола станка в продольном направлении, перемещением салазок в поперечном направлении и перемещением консоли в вертикальном направлении. Под подачей при фрезеровании понимают перемещение обрабатываемой заготовки относительно вращения фрезы. Она подразделяется на следующие виды:

подача на один зуб фрезы — перемещение стола в миллиметрах за время, когда фреза повернется на часть оборота, соответствующую расстоянию от одного зуба до другого (на один шаг), обозначается  $S_{3y6}$  и выражается в мм/зуб. Часто подачу на один зуб фрезы обозначают  $S_{z_n}$  где z — число зубьев фрезы;

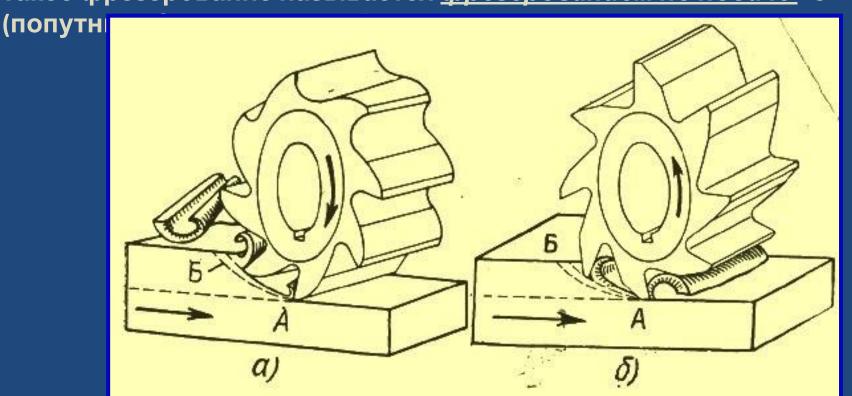
подача на один оборот фрезы — перемещение стола в миллиметрах за полный оборот фрезы, обозначается  $S_0 = S_{2} \cdot Z$  мм/об;

подача за одну минуту — перемещение стола в миллиметрах за 1 мин, обозначается S,  $S = S_0 \cdot n = S_2 \cdot Z \cdot n$  мм/мин.

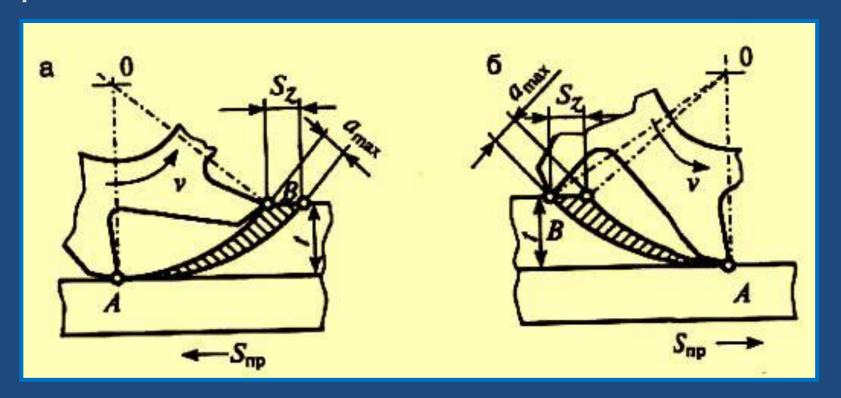
На практике пользуются всеми тремя значениями подачи. Выбор величины подачи осуществляется по специальным таблицам.

Скорость резания, подача, глубина и ширина резания не могут выбираться произвольно фрезеровщиком по собственному усмотрению, так как это может вызвать преждевременный износ фрезы, перегрузку и даже поломку отдельных узлов станка, нечистую поверхность обработки и т. д.

Все перечисленные выше элементы резания находятся в тесной зависимости друг от друга. Например, с увеличением скорости резания необходимо уменьшать подачу на зуб и снижать глубину резания, фрезерование с большой шириной резания требует уменьшения скорости резания и подачи, фрезерование с большой глубиной резания (черновую обработку) производят с меньшей скоростью резания, чем чистовую обработку, и т. д.


Кроме того, назначение скорости резания зависит от материала фрезы и материала заготовки. Фреза из быстрорежущей стали допускает большие скорости резания, чем из углеродистой стали; в свою очередь скорость резания для твердосплавной фрезы может быть в 4—5 раз выше, чем для быстрорежущей. Легкие сплавы можно фрезеровать со значительно большей скоростью резания, чем чугун. Чем тверже (крепче) стальная заготовка, тем меньше должна быть скорость резания.

## Виды фрезерования


Фрезерование поверхностей цилиндрическими и дисковыми фрезами может производиться при движении (подачи) стола станка с закреплённой обрабатываемой заготовкой навстречу направлению вращения фрезы, это общепринятое направление подачи, то такое фрезерование называется фрезерованием против подачи – а (встречным фрезерованием).

Если

подача заготовки совпадает с направлением вращения фрезы, то такое фрезерование называется фрезерованием по подаче - б



При встречном фрезы и заготовки в месте их контакта противоположны, зуб фрезы постепенно без удара врезается в металл, срезая всё более толстый слой. Нагрузка на станок возрастает постепенно. Однако перед врезанием зуба задняя поверхность сильно трётся об обрабатываемую поверхность, в результате чего увеличивается нагрев и износ фрезы, а также шероховатость поверхности.



При попутном фрезеровании (б), когда направление движения зуба фрезы и заготовки в месте их контакта совпадают зуб сразу начинает срезать полную стружку, поэтому врезание его в металл сопровождается ударом. Такое фрезерование нельзя производить на станке НГФ -110Ш4, т.к. он имеет нелостаточную жёсткость и виброустойчивость