Сравнение моделей

Сравнение вложенных моделей

Если нужно сравнить модели

$$y = \beta_1 + \beta_2 x^{(1)} + \beta_3 x^{(2)} + \beta_4 z^{(1)} + \beta_5 z^{(2)} + \varepsilon$$

$$y = \beta_1 + \beta_2 x^{(1)} + \beta_3 x^{(2)} + \varepsilon$$

То можно использовать тест для сравнения «короткой» и «длинной» регрессии

$$H_0: \beta_4 = \beta_5 = 0$$

Такие модели называются вложенными.

Сравнение НЕ вложенных моделей

(с одинаковой зависимой переменной)

Но что делать, если нужно сравнить модели

$$y = \beta_1 + \beta_2 x^{(1)} + \beta_3 x^{(2)} + \varepsilon$$
 (A)

 $y = \beta_1 + \beta_2 z^{(1)} + \beta_3 z^{(2)} + \varepsilon$ (B)

Такие модели называются не вложенными (nonnested)

Сравнение НЕ вложенных моделей

Оцениваем общую модель:

$$y = \beta_1 + \beta_2 x^{(1)} + \beta_3 x^{(2)} + \beta_4 z^{(1)} + \beta_5 z^{(2)} + \varepsilon$$

Проверяем **гипотезу A**: H_0 : $\beta_4 = \beta_5 = 0$

Проверяем **гипотезу B**: H_0 : $\beta_2 = \beta_3 = 0$

А принимается, **В** отклоняется => модель А лучше

В принимается, **А** отклоняется => модель В лучше

R² (сравниваем модели с одинаковой зависимой переменной)

• R² всегда растет при включении в модель дополнительных переменных!!! Поэтому лучше использовать R² (см. лекцию 4). Можно сравнивать вложенные модели.

• Если в двух моделях зависимые переменные разные, то их нельзя сравнивать, используя R²!!!!

Информационные критерии (Акаике, Шварца).

Модель плохая если:

- Плохо предсказывает (RSS большой)
- Сложная (много коэффицентов, большое k)
 Штрафуем модель за большое k и большую RSS

Информационные критерии:

- Akauke $AIC = n \ln(RSS/n) + 2k$
- Шварца $BIC = n \ln(RSS/n) + \ln(n)k$

Если мы хотим сравнить модели с зависимыми переменными у и ln(y)

• Для модели с In(y) рассчитывается AIC'

$$AIC' = AIC + 2\sum_{t=1}^{T} \log y_t,$$

Если мы хотим сравнить модели с зависимыми переменными у и ln(y)

Обратимся к R. Для нашего примера мы будем использовать данные longley из пакета datasets. Для начала оценим две простые модели (аддитивную и мультипликативную):

```
modelAdditive <- lm(GNP~Employed,data=longley)
modelMultiplicative <- lm(log(GNP)~Employed,data=longley)</pre>
```

Теперь посмотрим на информационные критерии:

```
AIC(modelAdditive)
> 142.7824
AIC(modelMultiplicative)
> -44.5661
```

Как видим, значения не сравнимы. Скорректируем второй информационный критерий:

```
AIC(modelMultiplicative)+2*sum(log(longley$GNP))
> 145.118
```

Теперь стало намного лучше! Можем заключить, что по информационному критерию первая модель (аддитивная) лучше второй.