

Российский университет дружбы народов Институт гостиничного бизнеса и туризма

В. Дихтяр

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

(для бакалавров)

- Раздел 1. *Системы управления базами данных и базами знаний*
- Тема 1-3. Реляционный подход к построению информационнологической модели (ИЛМ)

Скорость роста качества продукта и скорость совершенствования бизнес-процессов будут намного выше, а при достаточно большом значении этих показателей произойдет изменение характера самого бизнеса.

Б. Гейтс

ВВЕДЕНИЕ

- 1980 \rightarrow первые коммерческие версии *СУРБД*
- 2000 → в большей части Φ (во всех сферах A): хранение, ведение и анализ D

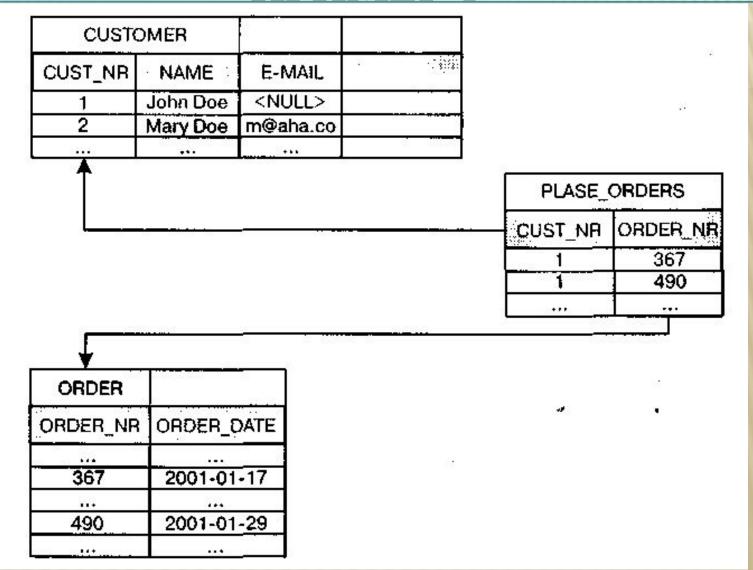
Идея: $\check{D} \to \mathbf{B} T$ (таблица)

- столбцы $T^{j} =$ поля (атрибуты, домены): один тип D
- строки $T_i = 3$ аписи: значения, соответствующие T^j

ТАБЛИЦЫ

 $T \equiv$ двухмерный массив (t_{ij}) :

- $\forall t_{ij}$ один элемент \check{D}
- все T^j однородные
- $\forall T^j$ имеет уникальное имя
- одинаковых T_i нет
- порядок следования T_i и T^j —произвольный


ИНФОРМАЦИОННЫЙ ОБЪЕКТ 👸

- \equiv описание некоторой сущности (\hat{o}_{real})
- реквизитный состав $+\hat{S}(\hat{o}_{i})$ $\Rightarrow \kappa nacc$ (тип) + уникальное имя (обозначение)
- ô, имеет множество реализаций экземпляров
- <u>экземпляр</u> \equiv {конкретные значения реквизитов}, идентифицируется ключом (*простой* один реквизит, *составной* несколько)
- остальные реквизиты описательные

СТРУКТУРА ТАБЛИЦ $\hat{S}(T)$

- Т фундаментальный элемент БД(соответствует одной сущности)
- $\hat{S}(T) \equiv \{$ связанные $T^j\};$ связь $\equiv \underline{\text{отношение}}\ T^j$
- значения T^{j} атомарные
 - \neq {массивы или \hat{S} значений}
- типы хранимых значений: алфавитно-цифровые, цифровые, «дата», ...

ПРИМЕР 1

КЛЮЧИ

- $T_V \equiv \text{первичный (простой) ключ} = один из <math>T^j$
- (∨ комбинация ≡ составной ключ)

подчеркиваются⇒

- однозначно идентифицировать ∀ T_i (правило целостности) ⇒
- различимость всех T_i
- связь $T1_i o T2_k$

ПРИМЕР 1 (ПРОДОЛЖЕНИЕ)

```
T customer: T_V = \underline{CUST\_NR}, T order: T_V = \underline{ORDER\_NR}, T place_orders: T_V = \underline{CUST\_NR} + \underline{ORDER\_NR} (комбинация)
```

ОРГАНИЗАЦИЯ

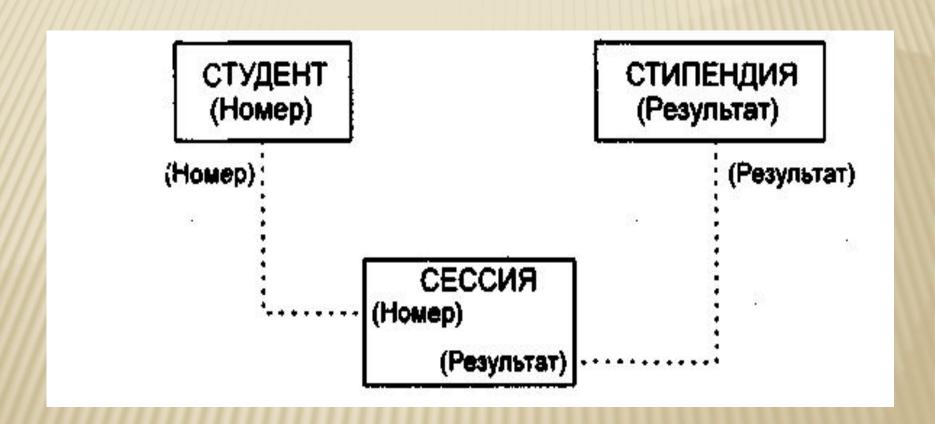
- $T \supset \check{D}$ | организованы по $T_i = \{$ значения $T^i \}$
- \Rightarrow T_i определяет некоторую *сущность* \equiv \hat{O}
 - \square значений нет \Rightarrow «NULL»

ВНЕШНИЙ КЛЮЧ T_U

```
• T_U = T^j (\vee комбинация) \in T1 \Rightarrow ссылка на T_i \in T2 (T1 = \underline{\text{источник}}, T2 = \underline{\text{целевая, родительская}}) \Rightarrow T_U = \{3начения T_V - первичных ключей \in T2}
```

Правило «ссылочной целостности»: T_U (или его части)

- 1. не имеет значения (= содержит NULL) \lor
- 2. имеет значение (во всех T^{j}) и оно обязательно должно содержаться в значениях $T_{\nu}(T2)$


T_{U} ПО ОТНОШЕНИЮ К СТРОКАМ

- ограничение изменения или удаления: пока \exists ссылка по T_U на конкретную $T_i(T2)$, значение $T_V(T2)$ не может быть изменено или удалено
- каскадное изменение или удаление: значение $T_V(T2)$ изменяется \Rightarrow значения $T_U(T1)$ соответствующих строк тоже изменяются; $T_i(T2)$ удаляется \Rightarrow все связанные с ней по T_U $T_i(T1)$ тоже удаляются
- <u>обнуление обновления или удаления</u>: $T_V(T2)$ изменяется $\Rightarrow T_i$ удаляется $+ T_U$ соответствующих $T_i(T1)$ теряют свои значения (NULL)

ПРИМЕР 1 (ПРОДОЛЖЕНИЕ)

 \square **T**PLACE_ORDERS \Rightarrow первичный ключ $T_V = (T1_U)$, $T2_U$) - комбинация двух внешних ключей T_V _CUST_NR $\equiv T1_U \rightarrow T_V =$ CUST_NR $\subseteq T$ CUSTOMER T_V _ORDER_NR $\equiv T2_U \rightarrow T_V =$ ORDER_NR $\equiv T2_U \rightarrow T_V =$

ПРИМЕР 2: РЕЛЯЦИОННАЯ МОДЕЛЬ

ПРИМЕР 2: ПОЯСНЕНИЕ

- *T1* = СТУДЕНТ (*Hомер*, Фамилия, Имя, Отчество, Пол, Дата рождения, Группа)
- *T2* = СЕССИЯ (*Homep*, Оценка 1, Оценка 2, Оценка 3, Оценка 4, *Peзультат*)
- T3 = СТИПЕНДИЯ(Pesynbmam, Процент)

$$T1 \leftrightarrow T2 : T_V = Homep$$

$$T2 \leftrightarrow T3 : T_U =$$
 Результат

НОРМАЛИЗАЦИЯ ОТНОШЕНИЙ

- ≡ формальный аппарат ограничений на формирование отношений (таблиц) ⇒
- устранить дублирование
- непротиворечивость хранимых в БД
- ↓ трудозатраты на ведение БД

ФОРМЫ НОРМАЛИЗАЦИИ: ПЕРВАЯ НФ

определяет понятие Т:

- фиксированное число столбцов
- все атрибуты простые (неделимые) = элементарные значения

Требование 1НФ, по сути, повторяет свойство реляционных таблиц: каждый элемент таблицы — один элемент данных.

☐ Т Студент = (Номер, Фамилия, Имя, Отчество, Группа, Дата)

ВТОРАЯ НФ

- $\equiv 1 \text{ форма} + \forall$ неключевой атрибут функционально полно (*f*-полно) зависит от составного ключа
- <u>f-зависимость</u>: в экземпляре \hat{o}_i определенному значению ключевого реквизита соответствует только одно значение описательного реквизита (атрибута)
- \square T^{j} f-зависит от T_{V} : \forall значению T_{V} определено значение T^{j} \Rightarrow обозначение « T_{V} T^{j} » \square

<u>f-полная зависимость</u>

- $\equiv \forall$ неключевой атрибут *f*-зависит от ключа (но ни от какой части составного ключа)
- □ T Студент = (Номер, Фамилия, Имя, Отчество, Дата, Группа): 1нф и 2 нф одновременно описательные реквизиты однозначно определены и f-зависят от T_V = Номер □
- □ *T* Успеваемость = (Номер, Фамилия, Имя, Отчество, Дисциплина, оценка): 1нф, составной T_V = Номер+Дисциплина не находится во 2нф: Фамилия, Имя, Отчество не находятся в полной *f*-зависимости с T_V □

ПРИМЕР (упр.)

Первичный ключ: CUST_NR и ORDER_NR

CUSTOMER_ORDERS NAME John Doe 1 367 2001-01-17 Mary Doe 2 480 2001-01-29

f- зависимости:

• (CUST_NR, ORDER_NR) (NAME, ORDER_DATE): все столбцы, не являющиеся первичными ключами, зависят от первичного ключа

CUSTOMER_ORDERS	
CUST_NR	ORDER_NR
1	367
2	480
***	444

• CUST_NR NAME: значения NAME зависят только от CUST_NR

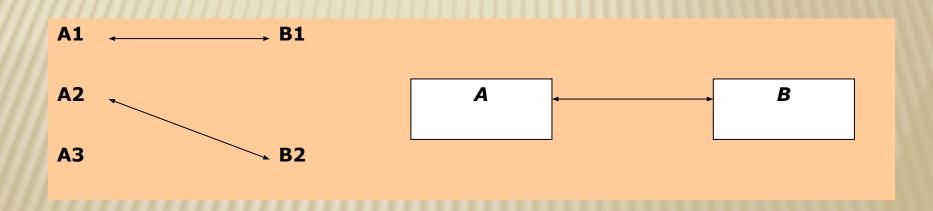
CUSTOMER	A secondaria
NAME	CUST_NR
John Doe	. 1
Mary Doe	2
111	100

• ORDER_NR ORDER_DATE: ORDER_DATE зависят только от ORDER_NR

ORDERS	
ORDER_NR	ORDER_DATE
367	2001-01-17
480	2001-01-29
	(1.00)

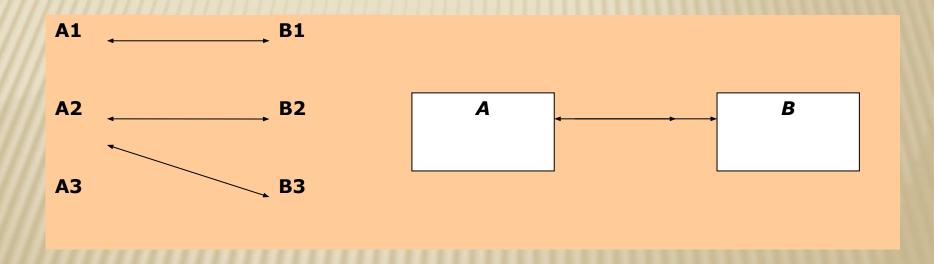
ТРЕТЬЯ *НФ*

<u>Транзитивная зависимость</u> ≡ если один из 2-х описательных реквизитов зависит от ключа, а другой от 1-го описательного реквизита

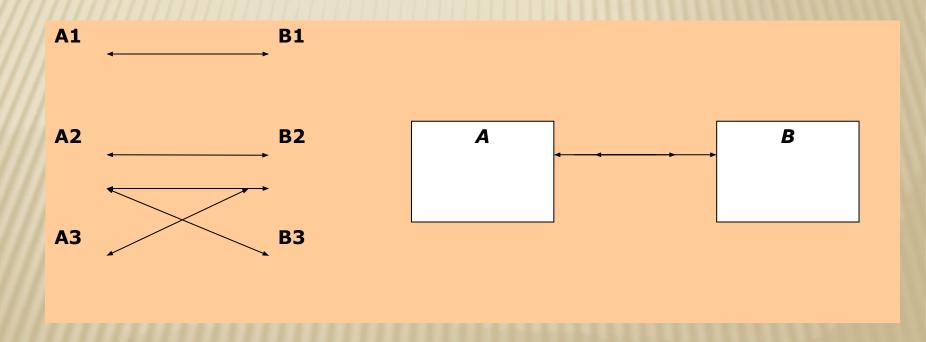

 $3 \text{ нф} ≡ 2 \text{нф} + \forall$ неключевой атрибут *нетранзитивно* зависит от первичного ключа

ПРИМЕР 3 нф (упр)

- Транзитивная зависимость
- **T** Студент: + Староста (определяется только номером группы) \Rightarrow фамилия старосты будет многократно повторяться в разных экземплярах \hat{O}_{i}
- ⇒ затруднения в корректировке при назначении нового старосты + расход памяти для хранения дублированной ĭ


ТИПЫ СВЯЗЕЙ «ОДИН К ОДНОМУ»

В каждый момент времени 1-экземпляру объекта A соответствует не более 1-объекта B и наоборот


«ОДИН КО МНОГИМ»

1-объекту A соответствует 0, 1 экземпляров B, но не более

«МНОГИЕ КО МНОГИМ»

1-экземпляру объекта A соответствует 0,1 или более экземпляров B и наоборот

АТРИБУТЫ

- \equiv атрибут(ы) со значением, уникальным для любого \hat{o} данного типа
 - ⇒ любой *о* будет однозначно определен значением первичного ключа

Потенциальные ключи ≡ комбинация(и) атрибутов \forall м.б. использован в качестве первичного ключа (на схеме подчеркивается)

□ Первичный ключ \hat{o} ЧЕЛОВЕК = № карточки соц. страхования <u>НКСС</u> □

ВИДЫ АТРИБУТОВ

<u>Составные атрибуты</u> ≡ образованы неск. атрибутами (на схеме соединяются прямой)

□ о Человек: два составных атрибута (Имя, Адрес) □

<u>Многозначный атрибут</u> ≡ имеет не единственное значение (выделяется двойным контуром)

□ Адрес является многозначным: *о* Человек могут иметь несколько адресов

ПРОИЗВОДНЫЕ АТРИБУТЫ

≡ принимают значения, которые могут быть вычислены по другим атрибутам того же типа *о̂* или по атрибутам типов, с которыми данный тип *о̂* может быть связан отношением (обозначаются заливкой)

□ значение Транспортный налог для *ô* МАШИНА м.б. получено по атрибуту Количество цилиндров □

ТИПЫ ОТНОШЕНИЙ У АТРИБУТОВ

- ∃ при наличии связей между типами о̂
- □ Дата покупки не м.б. атрибутом для типа Человек, т.к. в этом случае *о* Человек смогут владеть лишь одной машиной □
- □ Не имеет смысла приписывать этот атрибут и типуМашина, который был куплен-продан несколько раз,и непонятно, кто купил машину и когда