
C++ [OOP]

CLASSES AND OBJECTS

◼ The main purpose of C++ programming is to add object orientation to
the C programming language.

◼ A class is used to specify the form of an object and it combines data
representation and methods for manipulating that data into one neat
package.

◼ The data and functions within a class are called members of the class.

CLASS ACCESS MODIFIERS

◼ Data hiding is one of the important features of Object Oriented
Programming which allows preventing the functions of a program to
access directly the internal representation of a class type.

◼ A class can have multiple public, protected, or private labeled
sections. Each section remains in effect until either another section
label or the closing right brace of the class body is seen.

◼ public: Any class can access the features

◼ protected: Any subclass can access the feature

◼ private: No other class can access the feature

CLASS ACCESS MODIFIERS

1. class Base {

2. public:

3. // public members go here

4.

5. protected:

6. // protected members go here

7.

8. private:

9. // private members go here

10. };

THE PUBLIC MEMBERS EXAMPLE

◼ A public member is accessible from anywhere outside the class but within
a program.

◼ #include <iostream>
◼ using namespace std;
◼ class Line
◼ {
◼ public:
◼ double length;
◼ void setLength(double len);
◼ double getLength(void);
◼ };

THE PUBLIC MEMBERS EXAMPLE CON…

◼ // Member functions definitions

◼ double Line::getLength(void)

◼ {

◼ return length ;

◼ }

◼ void Line::setLength(double len)

◼ {

◼ length = len;

◼ }

THE PUBLIC MEMBERS EXAMPLE CON…

◼ // Main function for the program

◼ int main()

◼ { Line line;

◼ // set line length

◼ line.setLength(6.0);

◼ cout << "Length of line : " << line.getLength() <<endl;

◼ // set line length without member function

◼ line.length = 10.0; // OK: because length is public

◼ cout << "Length of line : " << line.length <<endl;

◼ return 0; }

Length of line : 6
Length of line : 10

THE PRIVATE MEMBERS

◼ A private member variable or function cannot be accessed, or even

viewed from outside the class. Only the class and friend functions can

access private members.

◼ By default all the members of a class would be private, for
example in the following class width is a private member.
◼ class Box
◼ { double width;
◼ public:
◼ double length;
◼ void setWidth(double wid);
◼ double getWidth(void);
◼ };

THE PRIVATE MEMBERS EXAMPLE

◼ #include <iostream>
◼ using namespace std;
◼ class Box
◼ { public:
◼ double length;
◼ void setWidth(double wid);
◼ double getWidth(void);
◼ private:
◼ double width;
◼ };
◼ // Member functions definitions
◼ double Box::getWidth(void)
◼ {
◼ return width ;
◼ }

THE PRIVATE MEMBERS EXAMPLE CON…

◼ void Box::setWidth(double wid) {
◼ width = wid;
◼ }
◼ int main() {
◼ Box box;
◼ // set box length without member function
◼ box.length = 10.0; // OK: because length is public
◼ cout << "Length of box : " << box.length <<endl;
◼
◼ // set box width without member function
◼ // box.width = 10.0; // Error: because width is private
◼ box.setWidth(10.0); // Use member function to set it.
◼ cout << "Width of box : " << box.getWidth() <<endl;
◼ return 0; }

Length of box : 10
Width of box : 10

THE PROTECTED MEMBERS EXAMPLE

◼ A protected member variable or function is very similar to a private member but it

provided one additional benefit that they can be accessed in child classes which are

called derived classes.

◼ #include <iostream>
◼ using namespace std;
◼
◼ class Box
◼ {
◼ protected:
◼ double width;
◼ };

THE PROTECTED MEMBERS EXAMPLE CON…

◼ class SmallBox:Box // SmallBox is the derived class.

◼ { public:

◼ void setSmallWidth(double wid);

◼ double getSmallWidth(void);

◼ };

◼

◼ // Member functions of child class

◼ double SmallBox::getSmallWidth(void) {

◼ return width ;

◼ }

…THE PROTECTED MEMBERS EXAMPLE CON

◼ void SmallBox::setSmallWidth(double wid) {
◼ width = wid;
◼ }

◼ // Main function for the program
◼ int main() {
◼ SmallBox box;
◼
◼ // set box width using member function
◼ box.setSmallWidth(5.0);
◼ cout << "Width of box : "<< box.getSmallWidth() << endl;
◼
◼ return 0;
◼ }

Width of box : 5

CLASS DEFINITIONS

◼ When you define a class, you define a blueprint for a data type. This

doesn't actually define any data, but it does define what the class name

means, that is, what an object of the class will consist of and what

operations can be performed on such an object.

◼ A class definition starts with the keyword class followed by the class
name;

CLASS DEFINITIONS EXAMPLE

1. class Box

2. {

3. public:

4. double length; // Length of a box

5. double breadth; // Breadth of a box

6. double height; // Height of a box

7. };

DEFINE C++ OBJECTS:

1. Box Box1; // Declare Box1 of type Box

2. Box Box2; // Declare Box2 of type Box

ACCESSING THE DATA MEMBERS

1. #include <iostream>

2. using namespace std;

3. class Box

4. {

5. public:

6. double length; // Length of a box

7. double breadth; // Breadth of a box

8. double height; // Height of a box

9. };

ACCESSING THE DATA MEMBERS CON…

1. int main()

2. {

3. Box Box1; // Declare Box1 of type Box

4. Box Box2; // Declare Box2 of type Box

5. double volume = 0.0; // Store the volume of a box here

6. // box 1 specification

7. Box1.height = 5.0;

8. Box1.length = 6.0;

9. Box1.breadth = 7.0;

 …ACCESSING THE DATA MEMBERS CON

1. // box 2 specification
2. Box2.height = 10.0;
3. Box2.length = 12.0;
4. Box2.breadth = 13.0;

5. // volume of box 1
6. volume = Box1.height * Box1.length * Box1.breadth;
7. cout << "Volume of Box1 : " << volume <<endl;
8. // volume of box 2
9. volume = Box2.height * Box2.length * Box2.breadth;

10. cout << "Volume of Box2 : " << volume <<endl;
11. return 0;
12. }

Volume of Box1 : 210
Volume of Box2 : 1560

CLASS MEMBER FUNCTIONS

◼ A member function of a class is a function that has its definition or its

prototype within the class definition like any other variable.

◼ class Box

◼ {

◼ public:

◼ double length; // Length of a box

◼ double breadth; // Breadth of a box

◼ double height; // Height of a box

◼ double getVolume(void);// Returns box volume

◼ };

CLASS MEMBER FUNCTIONS CON…

Method 1
◼ class Box
◼ {
◼ public:
◼ double length; // Length of a box
◼ double breadth; // Breadth of a box
◼ double height; // Height of a box
◼
◼ double getVolume(void)
◼ {
◼ return length * breadth * height;
◼ }
◼ };

Method 2
◼ double Box::getVolume(void)
◼ {
◼ return length * breadth * height;
◼ }

◼ Box myBox; // Create an object
◼ myBox.getVolume();
◼ // Call member function for the object

Member functions can be defined within the class definition or separately
using scope resolution operator, ::.

FULL EXAMPLE

◼ https://ideone.com/n9IX03

INHERITANCE

◼ “C++ is Multi Inheritance, unlike Java is Single inheritance”.

◼ Inheritance allows us to define a class in terms of another class, which makes it
easier to create and maintain an application. This also provides an opportunity
to reuse the code functionality and fast implementation time.

◼ When creating a class, instead of writing completely new data members

and member functions, the programmer can designate that the new class

should inherit the members of an existing class. This existing class is called

the base class, and the new class is referred to as the derived class.

BASE & DERIVED CLASSES

◼ A class can be derived from more than one classes, which means it can

inherit data and functions from multiple base classes.

◼ To define a derived class, we use a class derivation list to specify the base

class(es). A class derivation list names one or more base classes and

has the form:

◼ class derived-class: access-specifier base-class

◼ Where access-specifier is one of public, protected, or private.

◼ “base-class” is the name of a previously defined class.

FULL EXAMPLE

◼ Consider a base class Shape and its derived class Rectangle:

◼ https://ideone.com/dwJAOM

ACCESS CONTROL AND INHERITANCE

◼ A derived class can access all the non-private members of its base
class.

◼ A derived class inherits all base class methods with the following
exceptions:
◼ Constructors, destructors and copy constructors of the base class.

◼ Overloaded operators of the base class.

◼ The friend functions of the base class.

TYPE OF INHERITANCE [PUBLIC]

◼ Public Inheritance:
◼ When deriving a class from a public base class, public members of the base

class become public members of the derived class and protected members

of the base class become protected members of the derived class.

◼ A base class's privatemembers are never accessible directly from a derived

class, but can be accessed through calls to

the public and protected members of the base class.

TYPE OF INHERITANCE [PROTECTED AND
PRIVATE] CON…

◼ Protected Inheritance
◼ When deriving from a protected base class, public and protected

members of the base class become protected members of the derived class.

◼ Private Inheritance

◼ When deriving from a private base class, public and protected members of

the base class become private members of the derived class.

MULTIPLE INHERITANCES EXAMPLE

◼ https://ideone.com/yFSOrV

FUNCTION OVERLOADING

◼ An overloaded declaration is a declaration that had been declared with

the same name as a previously declared declaration in the same

scope, except that both declarations have different arguments and

obviously different definition (implementation).

◼ Function Overloading Example:
◼ https://ideone.com/ktn9Ln

POLYMORPHISM

◼ The word polymorphism means having many forms. Typically,

polymorphism occurs when there is a hierarchy of classes and they are

related by inheritance.

◼ C++ polymorphism means that a call to a member function will cause a

different function to be executed depending on the type of object that

invokes the function.

◼ Example:
◼ https://ideone.com/rGNTCc OR

 POLYMORPHISM [STATIC
RESOLUTION]

◼ Output of previous example:

◼ WHY !!!

◼ The reason for the incorrect output is that the call of the function area() is

being set once by the compiler as the version defined in the base class. This is

called static resolution of the function call, or static linkage - the function

call is fixed before the program is executed. This is also sometimes

called early binding because the area() function is set during the compilation of

the program.

Parent class area
Parent class area

POLYMORPHISM CON…

◼ class Shape {
◼ protected:
◼ int width, height;
◼ public:
◼ Shape(int a=0, int b=0) {
◼ width = a;
◼ height = b;
◼ }
◼ virtual int area() {
◼ cout << "Parent class area :" <<endl;
◼ return 0;
◼ }
◼ };

Rectangle class area
Triangle class area

This time, the compiler looks at the

contents of the pointer instead

of it's type. Hence, since addresses

of objects of tri and rec classes are

stored in *shape the respective

area() function is called.

VIRTUAL FUNCTION

◼ A virtual function is a function in a base class that is declared using

the keyword virtual. Defining in a base class a virtual function, with

another version in a derived class, signals to the compiler that we

don't want static linkage for this function.

PURE VIRTUAL FUNCTIONS

◼ class Shape {

◼ protected:

◼ int width, height;

◼ public:

◼ Shape(int a=0, int b=0) {

◼ width = a;

◼ height = b;

◼ }

◼ // pure virtual function

◼ virtual int area() = 0;

◼ };

The = 0 tells the compiler that the
function has no body

This virtual function will be
called pure virtual function.

It's possible that you'd want to
include a virtual function in a
base class so that it may be
redefined in a derived class to
suit the objects of that class, but
that there is no meaningful definition
you could give for the function in
the base class.

DATA ENCAPSULATION

◼ Data encapsulation led to the important OOP concept of data

hiding.

◼ Encapsulation is an Object Oriented Programming concept that binds

together the data and functions that manipulate the data, and that keeps

both safe from outside interference and misuse.

◼ Data encapsulation is a mechanism of bundling the data, and the

functions that use them.

DATA ENCAPSULATION CON…

◼ C++ supports the properties of encapsulation and data hiding through

the creation of user-defined types, called classes.

◼ We already have studied that a class can contain private,

protected and public members.

◼ By default, all items defined in a class are private

…DATA ENCAPSULATION CON

◼ class Box {

◼ public:

◼ double getVolume(void) {

◼ return length * breadth * height;

◼ }

◼ private:

◼ double length; // Length of a box

◼ double breadth; // Breadth of a box

◼ double height; // Height of a box

◼ };

The variables length, breadth, and
height are private.

This means that they can be
accessed only by other members of
the Box class, and not by any other
part of your program.

This is one way encapsulation is
achieved.

DATA ENCAPSULATION EXAMPLE

◼ https://ideone.com/jNBKrP

