Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа с. Коста» Ардонского района, РСО-Алания.

АЛКАНЫ: СОСТАВ, СТРОЕНИЕ, ИЗОМЕРИЯ, НОМЕНКЛАТУРА, ПОЛУЧЕНИЕ.

> Учитель химии и биологии: Мамитова К.Г.

ЦЕЛИ УРОКА:

сформировать представление о предельных углеводородах как классе органических соединений.

Образовательные:

оформировать основные понятия органической химии на примере алканов.

Развивающие:

- развивать логическое мышление при установлении причинноследственных связей между строением, составом и свойствами;
- развивать умение работать с дополнительными источниками информации, анализировать, отбирать и представлять необходимую информацию;
- отрабатывать предметную культуру речи, творческое и логическое мышление.

Воспитательные:

 способствовать развитию навыков коммуникативной культуры и сотрудничества при работе в группах; воспитывать информационную компетентность.

ПЛАН

- 1. Определение. Формула. Состав.
- 2.Строение.
- 3.Гомологический ряд. Номенклатура.
- 4. Физические свойства
- 5.Виды изомерии.
- 6.Способы получения.
- 7. Применение.

АЛКАНЫ

Класс

• Предельные углеводороды

Общая формула

 \cdot C_nH_{2n+2} n≥1

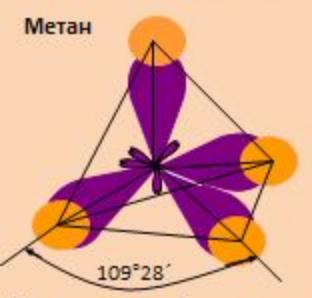
Особенности строения

• Все связи С - С одинарные

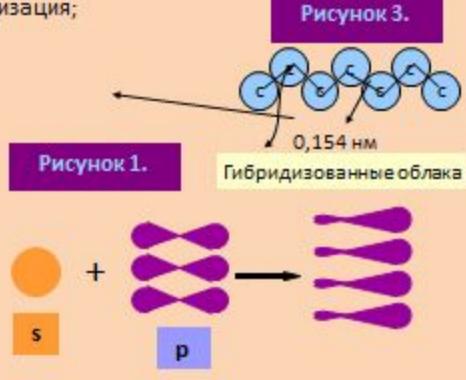
ГОМОЛОГИЧЕСКИИ РЯД АЛКАНОВ

1. Гомологический ряд алканов

	V:	32	V	V
Метан	CH₄		CH ₃ -	Метил
Этан	CH ₃ —CH ₃	C ₂ H ₆	CH ₃ —CH ₂ -	Этил
Пропан	CH ₃ —CH ₂ —CH ₃	C ₃ H ₈	CH ₃ —CH ₂ —CH ₂ -	н-Пропил
н-Бутан	CH ₃ —CH ₂ —CH ₂ —CH ₃	C ₄ H ₁₀	CH ₃ —(CH ₂) ₂ —CH ₂ -	Н-Бутил
н-Пентан	CH ₃ —(CH ₂) ₃ —CH ₃	C ₅ H ₁₂	CH ₃ —(CH ₂) ₃ —CH ₂ -	н-Пентил
н-Гексан	CH ₃ —(CH ₂) ₄ —CH ₃	C ₆ H ₁₄	CH ₃ —(CH ₂) ₄ —CH ₂ -	н-Гексил
н-Гептан	CH ₃ —(CH ₂) ₅ —CH ₃	C ₇ H ₁₆	CH ₃ —(CH ₂) ₅ —CH ₂ -	н-Гептил
Н-Октан	CH ₃ —(CH ₂) ₆ —CH ₃	C ₈ H ₁₈		
н-Нонан	CH ₃ —(CH ₂) ₇ —CH ₃	C ₉ H ₂₀		
н-декан	CH ₃ —(CH ₂) ₈ —CH ₃	C ₁₀ H ₂₂		


MyShared

Физические свойства



Строение метана

- Для алкановхарактерна sp⁵-гибридизация;
- Длина С-С связи = 0,154 нм
- Углы между орбиталями = 109° 28°

Перекрывание гибридных электронных облаков атомов углерода облаками атомов водорода.

Гибридизация — процесс выравнивания электронных облаков по форме и энергии

Рисунок 2.

ИЗОМЕРИЯ ОРГАНИЧЕСКИХВЕЩЕСТВ

Виды изомерии

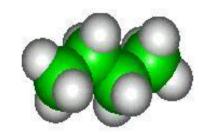
структурная

геометрическая

Углеро дного скелет а Положени я кратных связей

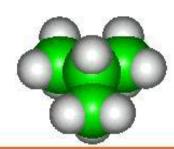
Положения функцион альных групп

Межкла с совая Геометр ическая (цистранс)


Оптиче ская

Изомерия и номенклатура алканов

Для парафиновых углеводородов характерна изомерия углеродной цепи


Например, существуют два углеводорода состава С₄H₁₀: *н*-бутан и изобутан

н-бутан **СН**₃ — **СН**₂ — **СН**₂ — **СН**₃

изобутан

CH₃ — CH — CH₃ | | CH₃

ПОЛУЧЕНИЕ АЛКАНОВ

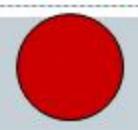
Промышленные методы.

- Газ, нефть.
- Гидрирование алкенов.

$$C2H4 + H2 \rightarrow C_2H_6$$

Лабораторные методы.

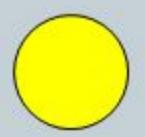
1. Гидролиз карбида алюминия


$$AI_4C_3 + 12 H_2O \rightarrow 4 AI(OH)_3 + 3CH_4$$
 2. Реакция Вюрца (удлинение углеродной цепи в 2 раза)

$$2 CH_3CI + 2 Na \rightarrow CH_3 - CH_3 + 2 NaCI$$

3. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

$$CH_3COONa + NaOH \rightarrow CH_4 + Na_2CO_3$$


Рефлексия

Я все понял, могу объяснить другому

По данной теме у меня остались вопросы

Недостаточно понял тему, сам сшибаюсь

домашнее Задание

□ §11, стр 67-72, зад.2 (на дополнительную оценку зад.7,8).